دورية أكاديمية

Structural dynamics and allostery of Rab proteins: strategies for drug discovery and design.

التفاصيل البيبلوغرافية
العنوان: Structural dynamics and allostery of Rab proteins: strategies for drug discovery and design.
المؤلفون: Kumar, Ammu Prasanna, Verma, Chandra S, Lukman, Suryani
المصدر: Briefings in Bioinformatics; Jan2021, Vol. 22 Issue 1, p270-287, 18p
مصطلحات موضوعية: DRUG design, STRUCTURAL dynamics, PROTEIN drugs, GUANOSINE triphosphatase, CYTOSKELETAL proteins, SMALL molecules
مستخلص: Rab proteins represent the largest family of the Rab superfamily guanosine triphosphatase (GTPase). Aberrant human Rab proteins are associated with multiple diseases, including cancers and neurological disorders. Rab subfamily members display subtle conformational variations that render specificity in their physiological functions and can be targeted for subfamily-specific drug design. However, drug discovery efforts have not focused much on targeting Rab allosteric non-nucleotide binding sites which are subjected to less evolutionary pressures to be conserved, hence are likely to offer subfamily specificity and may be less prone to undesirable off-target interactions and side effects. To discover druggable allosteric binding sites, Rab structural dynamics need to be first incorporated using multiple experimentally and computationally obtained structures. The high-dimensional structural data may necessitate feature extraction methods to identify manageable representative structures for subsequent analyses. We have detailed state-of-the-art computational methods to (i) identify binding sites using data on sequence, shape, energy, etc. (ii) determine the allosteric nature of these binding sites based on structural ensembles, residue networks and correlated motions and (iii) identify small molecule binders through structure- and ligand-based virtual screening. To benefit future studies for targeting Rab allosteric sites, we herein detail a refined workflow comprising multiple available computational methods, which have been successfully used alone or in combinations. This workflow is also applicable for drug discovery efforts targeting other medically important proteins. Depending on the structural dynamics of proteins of interest, researchers can select suitable strategies for allosteric drug discovery and design, from the resources of computational methods and tools enlisted in the workflow. [ABSTRACT FROM AUTHOR]
Copyright of Briefings in Bioinformatics is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14675463
DOI:10.1093/bib/bbz161