دورية أكاديمية

Machine learning-empowered sleep staging classification using multi-modality signals.

التفاصيل البيبلوغرافية
العنوان: Machine learning-empowered sleep staging classification using multi-modality signals.
المؤلفون: Satapathy, Santosh Kumar, Brahma, Biswajit, Panda, Baidyanath, Barsocchi, Paolo, Bhoi, Akash Kumar
المصدر: BMC Medical Informatics & Decision Making; 5/6/2024, Vol. 24 Issue 1, p1-29, 29p
مصطلحات موضوعية: SLEEP stages, FEATURE extraction, RANDOM forest algorithms, FEATURE selection, DATABASES
مستخلص: The goal is to enhance an automated sleep staging system's performance by leveraging the diverse signals captured through multi-modal polysomnography recordings. Three modalities of PSG signals, namely electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG), were considered to obtain the optimal fusions of the PSG signals, where 63 features were extracted. These include frequency-based, time-based, statistical-based, entropy-based, and non-linear-based features. We adopted the ReliefF (ReF) feature selection algorithms to find the suitable parts for each signal and superposition of PSG signals. Twelve top features were selected while correlated with the extracted feature sets' sleep stages. The selected features were fed into the AdaBoost with Random Forest (ADB + RF) classifier to validate the chosen segments and classify the sleep stages. This study's experiments were investigated by obtaining two testing schemes: epoch-wise testing and subject-wise testing. The suggested research was conducted using three publicly available datasets: ISRUC-Sleep subgroup1 (ISRUC-SG1), sleep-EDF(S-EDF), Physio bank CAP sleep database (PB-CAPSDB), and S-EDF-78 respectively. This work demonstrated that the proposed fusion strategy overestimates the common individual usage of PSG signals. [ABSTRACT FROM AUTHOR]
Copyright of BMC Medical Informatics & Decision Making is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14726947
DOI:10.1186/s12911-024-02522-2