دورية أكاديمية

Exploring the ageing methylome in the model insect, Nasonia vitripennis.

التفاصيل البيبلوغرافية
العنوان: Exploring the ageing methylome in the model insect, Nasonia vitripennis.
المؤلفون: Brink, K., Thomas, C. L., Jones, A., Chan, T. W., Mallon, E. B.
المصدر: BMC Genomics; 3/22/2024, Vol. 25 Issue 1, p1-9, 9p
مستخلص: Background: The ageing process is a multifaceted phenomenon marked by the gradual deterioration of cellular and organismal functions, accompanied by an elevated susceptibility to diseases. The intricate interplay between genetic and environmental factors complicates research, particularly in complex mammalian models. In this context, simple invertebrate organisms have been pivotal, but the current models lack detectable DNA methylation limiting the exploration of this critical epigenetic ageing mechanism. This study introduces Nasonia vitripennis, the jewel wasp, as an innovative invertebrate model for investigating the epigenetics of ageing. Leveraging its advantages as a model organism and possessing a functional DNA methylation system, Nasonia emerges as a valuable addition to ageing research. Results: Whole-genome bisulfite sequencing unveiled dynamic alterations in DNA methylation, with differentially methylated CpGs between distinct time points in both male and female wasps. These changes were associated with numerous genes, enriching for functions related to telomere maintenance, histone methylation, and mRNA catabolic processes. Additionally, other CpGs were found to be variably methylated at each timepoint. Sex-specific effects on epigenetic entropy were observed, indicating differential patterns in the loss of epigenetic stability over time. Constructing an epigenetic clock containing 19 CpGs revealed a robust correlation between epigenetic age and chronological age. Conclusions: Nasonia vitripennis emerges as a promising model for investigating the epigenetics of ageing, shedding light on the intricate dynamics of DNA methylation and their implications for age-related processes. This research not only expands the repertoire of ageing models but also opens avenues for deeper exploration of epigenetic mechanisms in the context of ageing. [ABSTRACT FROM AUTHOR]
Copyright of BMC Genomics is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14712164
DOI:10.1186/s12864-024-10211-7