دورية أكاديمية

Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model.

التفاصيل البيبلوغرافية
العنوان: Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model.
المؤلفون: Lin, Yi, Qi, Xiwu, Wan, Yan, Chen, Zequn, Fang, Hailing, Liang, Chengyuan
المصدر: BMC Genomics; 8/8/2023, Vol. 24 Issue 1, p1-17, 17p
مصطلحات موضوعية: GENE families, JAPANESE honeysuckle, HOMEOBOX genes, GENE expression, CHINESE medicine
مستخلص: Background: Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. Results: In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. Conclusion: This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica. [ABSTRACT FROM AUTHOR]
Copyright of BMC Genomics is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14712164
DOI:10.1186/s12864-023-09509-9