دورية أكاديمية

Real-Time Visual Kinematic Feedback During Overground Walking Improves Gait Biomechanics in Individuals Post-Stroke.

التفاصيل البيبلوغرافية
العنوان: Real-Time Visual Kinematic Feedback During Overground Walking Improves Gait Biomechanics in Individuals Post-Stroke.
المؤلفون: Hinton, Erica H., Buffum, Russell, Kingston, David, Stergiou, Nick, Kesar, Trisha, Bierner, Samuel, Knarr, Brian A.
المصدر: Annals of Biomedical Engineering; Feb2024, Vol. 52 Issue 2, p355-363, 9p
مستخلص: Treadmill-based gait rehabilitation protocols have shown that real-time visual biofeedback can promote learning of improved gait biomechanics, but previous feedback work has largely involved treadmill walking and not overground gait. The objective of this study was to determine the short-term response to hip extension visual biofeedback, with individuals post-stroke, during unconstrained overground walking. Individuals post-stroke typically have a decreased paretic propulsion and walking speed, but increasing hip extension angle may enable the paretic leg to better translate force anteriorly during push-off. Fourteen individuals post-stroke completed overground walking, one 6-min control bout without feedback, and three 6-min training bouts with real-time feedback. Data were recorded before and after the control bout, before and after the first training bout, and after the third training bout to assess the effects of training. Visual biofeedback consisted of a display attached to eyeglasses that showed one horizontal bar indicating the user's current hip angle and another symbolizing the target hip extension to be reached during training. On average, paretic hip extension angle (p = 0.014), trailing limb angle (p = 0.025), and propulsion (p = 0.011) were significantly higher after training. Walking speed increased but was not significantly higher after training (p = 0.089). Individuals demonstrated a greater increase in their hip extension angle (p = 0.035) and propulsion (p = 0.030) after the walking bout with feedback compared to the control bout, but changes in walking speed did not significantly differ (p = 0.583) between a control walking bout and a feedback bout. Our results show the feasibility of overground visual gait feedback and suggest that feedback regarding paretic hip extension angle enabled many individuals post-stroke to improve parameters important for their walking function. [ABSTRACT FROM AUTHOR]
Copyright of Annals of Biomedical Engineering is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00906964
DOI:10.1007/s10439-023-03381-0