يعرض 1 - 10 نتائج من 37 نتيجة بحث عن '"hydrocephalus"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1

    المصدر: Journal of Neurosurgery MultiPark: Multidisciplinary research focused on Parkinson´s disease. 140(3):612-620

    الوصف: OBJECTIVE: Diffusion tensor imaging (DTI) along the perivascular space (ALPS) (DTI-ALPS)-by calculating the ALPS index, a ratio accentuating water diffusion in the perivascular space-has been proposed as a noninvasive, indirect MRI method for assessing glymphatic function. The main aim of this study was to investigate whether DTI-ALPS would reveal glymphatic dysfunction in idiopathic normal pressure hydrocephalus (iNPH) and whether the ALPS index was associated with disease severity. METHODS: Thirty iNPH patients (13 men; median age 77 years) and 27 healthy controls (10 men; median age 73 years) underwent MRI and clinical assessment with the Timed Up and Go test (TUG) and Mini-Mental State Examination (MMSE); only the patients were evaluated with the Hellström iNPH scale. MRI data were analyzed with the DTI-ALPS method and Radscale screening tool. RESULTS: iNPH patients showed significantly lower mean ALPS index scores compared with healthy controls (median [interquartile range] 1.09 [1.00-1.15] vs 1.49 [1.36-1.59], p < 0.001). Female healthy controls showed significantly higher ALPS index scores than males in both hemispheres (e.g., right hemisphere 1.62 [1.47-1.67] vs 1.33 [1.14-1.41], p = 0.001). This sex difference was not seen in iNPH patients. The authors found a moderate exponential correlation between mean ALPS index score and motor function as measured with time required to complete TUG (r = -0.644, p < 0.001), number of steps to complete TUG (r = -0.571, p < 0.001), 10-m walk time (r = -0.637, p < 0.001), and 10-m walk steps (r = -0.588, p < 0.001). The authors also found a positive linear correlation between mean ALPS index score and MMSE score (r = 0.416, p = 0.001). Simple linear regression showed a significant effect of diagnosis (B = -0.39, p < 0.001, R2 = 0.459), female sex (B = 0.232, p = 0.002, R2 = 0.157), and Evans index (B = -4.151, p < 0.001, R2 = 0.559) on ALPS index. Multiple linear regression, including diagnosis, sex, and Evans index score, showed a higher predictive value (R2 = 0.626) than analysis of each of these factors alone. CONCLUSIONS: The ALPS index, which was significantly decreased in iNPH patients, could serve as a marker of disease severity, both clinically and in terms of neuroimaging. However, it is important to consider the significant influence of biological sex and ventriculomegaly on the ALPS index, which raises the question of whether the ALPS index solely reflects glymphatic function or if it also encompasses other types of injury. Future studies are needed to address potential confounding factors and further validate the ALPS method.

  2. 2

    المصدر: Fluids and Barriers of the CNS. 20

    الوصف: Background: Neuroinflammatory processes have been suggested to play a role in the pathophysiology of neurodegenerative diseases and post-hemorrhagic hydrocephalus, but have rarely been investigated in patients with idiopathic normal pressure hydrocephalus (iNPH). The aim of this study was to investigate whether levels of inflammatory proteins in CSF are different in iNPH compared to healthy controls and patients with selected neurodegenerative disorders, and whether any of these markers can aid in the differential diagnosis of iNPH.Methods: Lumbar CSF was collected from 172 patients from a single center and represented iNPH (n = 74), Alzheimer's disease (AD) (n = 21), mild cognitive impairment (MCI) due to AD (n = 21), stable MCI (n = 22), frontotemporal dementia (n = 13), and healthy controls (HC) (n = 21). Levels of 92 inflammatory proteins were analyzed using a proximity extension assay. As a first step, differences between iNPH and HC were investigated, and proteins that differed between iNPH and HC were then compared with those from the other groups. The linear regressions were adjusted for age, sex, and plate number.Results: Three proteins showed higher (MCP-1, p = 0.0013; CCL4, p = 0.0008; CCL11, p = 0.0022) and one lower (PD-L1, p = 0.0051) levels in patients with iNPH compared to HC. MCP-1 was then found to be higher in iNPH than in all other groups. CCL4 was higher in iNPH than in all other groups, except in MCI due to AD. PD-L1 was lower in iNPH compared to all other groups, except in stable MCI. Levels of CCL11 did not differ between iNPH and the differential diagnoses. In a model based on the four proteins mentioned above, the mean area under the receiver operating characteristic curve used to discriminate between iNPH and the other disorders was 0.91.Conclusions: The inflammatory cytokines MCP-1 and CCL4 are present at higher-and PD-L1 at lower-levels in iNPH than in the other investigated diagnoses. These three selected cytokines may have diagnostic potential in the work-up of patients with iNPH.

    وصف الملف: electronic

  3. 3

    المصدر: Fluids and Barriers of the CNS. 20

    الوصف: Introduction: The relationship between neurochemical changes and outcome after shunt surgery in idiopathic normal pressure hydrocephalus (iNPH), a treatable dementia and gait disorder, is unclear. We used baseline ventricular CSF to explore associations to outcome, after shunting, of biomarkers selected to reflect a range of pathophysiological processes.Methods: In 119 consecutive patients with iNPH, the iNPH scale was used before and after shunt surgery to quantify outcome. Ventricular CSF was collected perioperatively and analyzed for biomarkers of astrogliosis, axonal, amyloid and tau pathology, and synaptic dysfunction: glial fibrillary acidic protein (GFAP), chitinase-3-like protein 1 (YKL40/CHI3L1), monocyte chemoattractant protein-1 (MCP-1) neurofilament light (NfL), amyloid beta 38 (A beta 38), A beta 40, A beta 42, amyloid beta 42/40 ratio (A beta 42/40), soluble amyloid precursor protein alfa (sAPP alpha), sAPP beta, total tau (T-tau), phosphorylated tau (P-tau), growth-associated protein 43 (GAP43), and neurogranin.Results: The neurogranin concentration was higher in improved (68%) compared to unimproved patients (median 365 ng/L (IQR 186-544) vs 330 (205-456); p = 0.046). A linear regression model controlled for age, sex and vascular risk factors including neurogranin, T-tau, and GFAP, resulted in adjusted R2 = 0.06, p = 0.047. The A beta 42/40 ratio was bimodally distributed across all samples, as well as in the subgroups of improved and unimproved patients but did not contribute to outcome prediction. The preoperative MMSE score was lower within the low A beta ratio group (median 25, IQR 23-28) compared to the high subgroup (26, 24-29) (p = 0.028). The T-Tau x A beta 40/42 ratio and P-tau x A beta 40/42 ratio did not contribute to shunt response prediction. The prevalence of vascular risk factors did not affect shunt response.Discussion: A higher preoperative ventricular CSF level of neurogranin, which is a postsynaptic marker, may signal a favorable postoperative outcome. Concentrations of a panel of ventricular CSF biomarkers explained only 6% of the variability in outcome. Evidence of amyloid or tau pathology did not affect the outcome.

    وصف الملف: electronic

  4. 4

    المصدر: Fluids and Barriers of the CNS. 19(1)

    الوصف: Introduction: The treatment of hydrocephalus has been a topic of intense research ever since the first clinically successful use of a valved cerebrospinal fluid shunt 72 years ago. While ample studies elucidating different phenomena impacting this treatment exist, there are still gaps to be filled. Specifically, how intracranial, intrathecal, arterial, and venous pressures react and communicate with each other simultaneously.Methods: An in-vivo sheep trial (n = 6) was conducted to evaluate and quantify the communication existing within the cranio-spinal, arterial, and venous systems (1 kHz sampling frequency). Standardized intrathecal infusion testing was performed using an automated infusion apparatus, including bolus and constant pressure infusions. Bolus infusions entailed six lumbar intrathecal infusions of 2 mL Ringer’s solution. Constant pressure infusions were comprised of six regulated pressure steps of 3.75 mmHg for periods of 7 min each. Mean pressure reactions, pulse amplitude reactions, and outflow resistance were calculated.Results: All sheep showed intracranial pressure reactions to acute increases of intrathecal pressure, with four of six sheep showing clear cranio-spinal communication. During bolus infusions, the increases of mean pressure for intrathecal, intracranial, arterial, and venous pressure were 16.6 ± 0.9, 15.4 ± 0.8, 3.9 ± 0.8, and 0.1 ± 0.2 mmHg with corresponding pulse amplitude increases of 2.4 ± 0.3, 1.3 ± 0.3, 1.3 ± 0.3, and 0.2 ± 0.1 mmHg, respectively. During constant pressure infusions, mean increases from baseline were 14.6 ± 3.8, 15.5 ± 4.2, 4.2 ± 8.2, and 3.2 ± 2.4 mmHg with the corresponding pulse amplitude increases of 2.5 ± 3.6, 2.5 ± 3.0, 7.7 ± 4.3, and 0.7 ± 2.0 mmHg for intrathecal, intracranial, arterial, and venous pulse amplitude, respectively. Outflow resistances were calculated as 51.6 ± 7.8 and 77.8 ± 14.5 mmHg/mL/min for the bolus and constant pressure infusion methods, respectively—showing deviations between the two estimation methods.Conclusions: Standardized infusion tests with multi-compartmental pressure recordings in sheep have helped capture distinct reactions between the intrathecal, intracranial, arterial, and venous systems. Volumetric pressure changes in the intrathecal space have been shown to propagate to the intraventricular and arterial systems in our sample, and to the venous side in individual cases. These results represent an important step into achieving a more complete quantitative understanding of how an acute rise in intrathecal pressure can propagate and influence other systems.

    وصف الملف: electronic

  5. 5

    المؤلفون: Liden, Simon, Farahmand, Dan, Laurell, Katarina, 1967

    المصدر: Fluids and Barriers of the CNS. 19(1)

    الوصف: Background: Levels of the biomarkers amyloid-beta 1-42 (A beta 42), tau and phosphorylated tau (p-tau) are decreased in the cerebrospinal fluid (CSF) of patients with idiopathic normal pressure hydrocephalus (iNPH). The mechanism behind this is unknown, but one potential explanation is dilution by excessive CSF volumes. The aim of this study was to investigate the presence of a dilution effect, by studying the relationship between ventricular volume (VV) and the levels of the CSF biomarkers. Methods: In this cross-sectional observational study, preoperative magnetic resonance imaging (MRI) and lumbar CSF was acquired from 136 patients with a median age of 76 years, 89 men and 47 females, selected for surgical treat-ment for iNPH. The CSF volume of the lateral and third ventricles was segmented on MRI and related to preoperative concentrations of A beta 42, tau and p-tau. Results: In the total sample W (Median 140.7 mL) correlated weakly (r(s) = - 0.17) with A beta 42 (Median 534 pg/mL), but not with tau (Median 216 pg/mL) nor p-tau (Median 31 pg/mL). In a subgroup analysis, the correlation between W and A beta 42 was only present in the male group (r(s) = - 0.22, p= 0.038). Further, A beta 42 correlated positively with tau (r(s) =0.30, p= 0.004) and p-tau (r(s) = 0.26, p = 0.012) in males but not in females. Conclusions: The findings did not support a major dilution effect in iNPH, at least not in females. The only result in favor for dilution was a weak negative correlation between VV and A beta 42 but not with the other lumbar CSF biomarkers. The different results between males and females suggest that future investigations of the CSF pattern in iNPH would gain from sex-based subgroup analysis.

    وصف الملف: electronic

  6. 6

    المصدر: Journal of Alzheimers Disease. 94(2):727-736

    الوصف: Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide and a frequent comorbidity in idiopathic normal pressure hydrocephalus (iNPH). The presence of AD pathology is associated with worse outcomes after a shunt procedure in iNPH. Preoperative diagnosis of AD is challenging in patients with iNPH, which involves reduced concentrations of the cerebrospinal fluid (CSF) AD biomarkers. Objective: Our aim was to estimate the effect size of iNPH as a factor in CSF levels of AD biomarkers and to test if correction could be used to improve diagnostic value. Methods: Our cohort included 222 iNPH patients with data in the Kuopio NPH registry and brain biopsy and CSF samples available. We divided the patients into groups according to AD pathology per brain biopsy. For control cohorts, we had CSF samples from cognitively healthy individuals (n = 33) and patients with diagnosed AD and no iNPH (n = 39). Results: Levels of all investigated biomarkers differed significantly between groups, with the exception of t-Tau levels between healthy individuals and iNPH patients with AD pathology. Applying a correction factor for each biomarker (0.842*A beta(1-42), 0.779*t-Tau, and 0.610*P-Tau181) for the effect of iNPH yielded a sensitivity of 2.4% and specificity of 100%. The ratio of P-Tau(181) to A beta(1-42) was moderately effective in aiding recognition of AD pathology in iNPH patients (sensitivity 0.79, specificity 0.76, area under the curve 0.824). Conclusion: Correcting for iNPH as a factor failed to improve diagnostic effectiveness, but the P-Tau(181)/A beta(1-42) ratio showed some utility in the diagnosis of AD in iNPH patients.

  7. 7

    المصدر: Acta Neurologica Scandinavica. 135(5):576-584

    الوصف: Objectives: Increased aqueduct cerebrospinal fluid (CSF) flow pulsatility and, recently, a reversed CSF flow in the aqueduct have been suggested as hallmarks of idiopathic normal pressure hydrocephalus (INPH). However, these findings have not been adequately confirmed. Our objective was to investigate the flow of blood and CSF in INPH, as compared to healthy elderly, in order to clarify which flow parameters are related to the INPH pathophysiology.Materials and Methods: Sixteen INPH patients (73 years) and 35 healthy subjects (72 years) underwent phase-contrast magnetic resonance imaging (MRI). Measurements included aqueduct and cervical CSF flow, total arterial inflow (tCBF; i.e. carotid + vertebral arteries), and internal jugular vein flow. Flow pulsatility, net flow, and flow delays were compared (multiple linear regression, correcting for sex and age).Results: Aqueduct stroke volume was higher in INPH than healthy (148±95 vs 90±50 mL, P<.05). Net aqueduct CSF flow was similar in magnitude and direction. The cervical CSF stroke volume was lower (P<.05). The internal carotid artery net flow was lower in INPH (P<.05), although tCBF was not. No differences were found in internal jugular vein flow or flow delays.Conclusions: The typical flow of blood and CSF in INPH was mainly characterized by increased CSF pulsatility in the aqueduct and reduced cervical CSF pulsatility. The direction of mean net aqueduct CSF flow was from the third to the fourth ventricle. Our findings may reflect the altered distribution of intracranial CSF volume in INPH, although the causality of these relationships is unclear.

    وصف الملف: electronic

  8. 8

    المصدر: Fluids and Barriers of the Cns. 20(1)

    الوصف: BackgroundPathological cerebral conditions may manifest in altered composition of the cerebrospinal fluid (CSF). Although diagnostic CSF analysis seeks to establish pathological disturbances in the brain proper, CSF is generally sampled from the lumbar compartment for reasons of technical ease and ethical considerations. We here aimed to compare the molecular composition of CSF obtained from the ventricular versus the lumbar CSF compartments to establish a relevance for employing lumbar CSF as a proxy for the CSF bathing the brain tissue.MethodsCSF was collected from 46 patients with idiopathic normal pressure hydrocephalus (iNPH) patients during their diagnostic workup (lumbar samples) and in connection with their subsequent CSF diversion shunt surgery (ventricular samples). The mass-spectrometry-based proteomic profile was determined in these samples and in addition, selected biomarkers were quantified with ELISA (S100B, neurofilament light (NfL), amyloid-beta (A beta(40), A beta(42)), and total tau (T-tau) and phosphorylated tau (P-tau) forms). The latter analysis was extended to include paired porcine samples obtained from the lumbar compartment and the cerebromedullary cistern closely related to the ventricles.ResultsIn total 1231 proteins were detected in the human CSF. Of these, 216 distributed equally in the two CSF compartments, whereas 22 were preferentially (or solely) present in the ventricular CSF and four in the lumbar CSF. The selected biomarkers of neurodegeneration and Alzheimer's disease displayed differential distribution, some with higher (S100B, T-tau, and P-tau) and some with lower (NfL, A beta(40), A beta(42)) levels in the ventricular compartment. In the porcine samples, all biomarkers were most abundant in the lumbar CSF.ConclusionsThe overall proteomic profile differs between the ventricular and the lumbar CSF compartments, and so does the distribution of clinically employed biomarkers. However, for a range of CSF proteins and biomarkers, one can reliably employ lumbar CSF as a proxy for ventricular CSF if or a lumbar/cranial index for the particular molecule has been established. It is therefore important to verify the compartmental preference of the proteins or biomarkers of interest prior to extrapolating from lumbar CSF to that of the ventricular fluid bordering the brain.

  9. 9

    المؤلفون: Holmlund, Petter, 1988

    المساهمون: Eklund, Anders, Professor, 1965, Qvarlander, Sara, PhD, Malm, Jan, Professor, Czosnyka, Marek, Professor

    المصدر: Umeå University medical dissertations.

    الوصف: Intracranial pressure (ICP) is an important component of the fluid dynamic environment of the brain and plays a central role with regards to the maintenance of normal cerebral blood flow and neuronal function. However, many regulatory mechanisms controlling the ICP are still poorly understood. One major gap in knowledge in this regard is the mechanism behind the postural/gravitational control of ICP. This is partly due to the fact that most ICP investigations are performed with the patients in a supine or recumbent position. Since most people spend 16 hours a day in an upright position, understanding these mechanics is highly motivated. Also spurring research on this topic is the increasing number of reports of the spaceflight-associated neuro-ocular syndrome (SANS) found in astronauts after prolonged exposure to weightlessness (i.e. microgravity), where evidence suggests that a disrupted balance between ICP and intraocular pressure (IOP) may be an underlying cause. Understanding how ICP is regulated with respect to posture could therefore provide important insight into the alterations introduced by microgravity, where postural effects are removed, and how to improve the safety of astronauts who are susceptible to this syndrome. Here on earth, disturbances in the ICP or cerebrospinal fluid (CSF) dynamics are associated with the development of chronic neurological diseases. One particular disease of interest is communicating hydrocephalus, where the cerebral ventricles are enlarged despite the absence of macroscopic CSF flow obstructions. A common finding in these patients is that of altered pulsatile flow in the CSF. The overall aim of this thesis was to utilize fluid dynamic principles to describe and validate potential regulatory mechanisms behind postural changes in ICP and causes of ventriculomegaly. The thesis is based on four scientific papers (paper I—IV).A postural dependency of the IOP-ICP pressure difference was verified by simultaneous measurements of ICP (assessed through lumbar puncture) and IOP (measured with an Applanation Resonance Tonometer) (paper I). Based on these measurements, a 24-hour average of the IOP-ICP pressure difference at the level of the eye was estimated for the state of microgravity, predicting a reduced pressure difference in space compared with that on earth.A hypothesis where postural changes in ICP are described by hydrostatic effects in the venous system, and where these effects are altered by the collapse of the internal jugular veins (IJVs) in more upright positions, was evaluated (paper II and III). Using ultrasound data, it was shown that the venous hydrostatic pressure gradient was balanced by viscous pressure losses in the collapsed IJVs to uphold a near atmospheric pressure at the level of the neck in the upright posture (paper II). A full evaluation of the hypothesis was then performed, based on simultaneous assessment of ICP, central venous pressure (through a PICC-line) and venous collapse in 7 postures of upper-body tilt in healthy volunteers (paper III).The proposed description could accurately predict the general changes seen in the measured ICP for all investigated postures (mean difference: -0.03±2.7 mmHg or -4.0±360 Pa).Pulsatile CSF flow-induced pressure differences between the ventricles and subarachnoid space were evaluated as a source for ventriculomegaly in communicating hydrocephalus (paper IV). The pressure distributions resulting from the pulsatile CSF flow were calculated using computational fluid dynamics based on MRI data. The estimated pressures revealed a net pressure difference (mean: 0.001±0.003 mmHg or 0.2±0.4 Pa, p=0.03) between the ventricles and the subarachnoid space, over the cardiac cycle, with higher pressure in the third and lateral ventricles.In conclusion, the results of this thesis support venous hydrostatics and jugular venous collapse as key governing factors in the postural/gravitational control of ICP. Furthermore, a postural dependency of the IOP-ICP pressure difference was demonstrated, providing a potential explanation for how an imbalance between the pressure of the eye and brain can be introduced in microgravity. Computational fluid dynamic analysis revealed that the altered pulsations in communicating hydrocephalus generate a pressure gradient within the CSF system. However, the gradient was small and additional effects are probably needed to explain the ventriculomegaly in these patients.

    وصف الملف: electronic

  10. 10

    المصدر: Fluids and Barriers of the CNS. 20(1)

    الوصف: Introduction: The relationship between neurochemical changes and outcome after shunt surgery in idiopathic normal pressure hydrocephalus (iNPH), a treatable dementia and gait disorder, is unclear. We used baseline ventricular CSF to explore associations to outcome, after shunting, of biomarkers selected to reflect a range of pathophysiological processes. Methods: In 119 consecutive patients with iNPH, the iNPH scale was used before and after shunt surgery to quantify outcome. Ventricular CSF was collected perioperatively and analyzed for biomarkers of astrogliosis, axonal, amyloid and tau pathology, and synaptic dysfunction: glial fibrillary acidic protein (GFAP), chitinase-3-like protein 1 (YKL40/CHI3L1), monocyte chemoattractant protein-1 (MCP-1) neurofilament light (NfL), amyloid beta 38 (Aβ38), Aβ40, Aβ42, amyloid beta 42/40 ratio (Aβ42/40), soluble amyloid precursor protein alfa (sAPPα), sAPPβ, total tau (T-tau), phosphorylated tau (P-tau), growth-associated protein 43 (GAP43), and neurogranin. Results: The neurogranin concentration was higher in improved (68%) compared to unimproved patients (median 365ng/L (IQR 186–544) vs 330 (205–456); p = 0.046). A linear regression model controlled for age, sex and vascular risk factors including neurogranin, T-tau, and GFAP, resulted in adjusted R2 = 0.06, p = 0.047. The Aβ42/40 ratio was bimodally distributed across all samples, as well as in the subgroups of improved and unimproved patients but did not contribute to outcome prediction. The preoperative MMSE score was lower within the low Aβ ratio group (median 25, IQR 23–28) compared to the high subgroup (26, 24–29) (p = 0.028). The T-Tau x Aβ40/42 ratio and P-tau x Aβ40/42 ratio did not contribute to shunt response prediction. The prevalence of vascular risk factors did not affect shunt response. Discussion: A higher preoperative ventricular CSF level of neurogranin, which is a postsynaptic marker, may signal a favorable postoperative outcome. Concentrations of a panel of ventricular CSF biomarkers explained only 6% of the variability in outcome. Evidence of amyloid or tau pathology did not affect the outcome.