دورية أكاديمية

Earthworms accelerate rice straw decomposition and maintenance of soil organic carbon dynamics in rice agroecosystems

التفاصيل البيبلوغرافية
العنوان: Earthworms accelerate rice straw decomposition and maintenance of soil organic carbon dynamics in rice agroecosystems
المؤلفون: Ke Song, Lijuan Sun, Weiguang Lv, Xianqing Zheng, Yafei Sun, William Terzaghi, Qin Qin, Yong Xue
المصدر: PeerJ, Vol 8, p e9870 (2020)
بيانات النشر: PeerJ Inc., 2020.
سنة النشر: 2020
المجموعة: LCC:Medicine
LCC:Biology (General)
مصطلحات موضوعية: Earthworms, Rice residues, SOC, Aggregate-associated carbon, Soil basal respiration, Enzyme activities, Medicine, Biology (General), QH301-705.5
الوصف: Background To promote straw degradation, we inoculated returned farmland straw with earthworms (Pheretima guillelmi). Increasing the number of earthworms may generally alter soil organic carbon (SOC) dynamics and the biological activity of agricultural soils. Methods We performed soil mesocosm experiments with and without earthworms to assess the decomposition and microbial mineralization of returned straw and soil enzyme activity across different time periods. Results When earthworms were present in soil, the surface residues were completely consumed during the first four weeks, but when earthworms were absent, most of the residues remained on the soil surface after 18 weeks. On day 28, the SOC content was significantly higher in the treatment where both earthworms and residue had been added. The SOC content was lower in the treatment where earthworms but no residue had been added. The organic carbon content in water-stable macroaggregates showed the same trend. During the first 14 weeks, the soil basal respiration was highest in the treatments with both residues and earthworms. From weeks 14 to 18, basal respiration was highest in the treatments with residues but without earthworms. We found a significant positive correlation between soil basal respiration and soil dissolved organic carbon content. Earthworms increased the activity of protease, invertase, urease and alkaline phosphatase enzymes, but decreased β-cellobiohydrolase, β-glucosidase and xylosidase activity, as well as significantly reducing ergosterol content. Conclusion The primary decomposition of exogenous rice residues was mainly performed by earthworms. Over a short period of time, they converted plant carbon into soil carbon and increased SOC. The earthworms played a key role in carbon conversion and stabilization. In the absence of exogenous residues, earthworm activity accelerated the decomposition of original organic carbon in the soil, reduced SOC, and promoted carbon mineralization.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2167-8359
العلاقة: https://peerj.com/articles/9870.pdfTest; https://peerj.com/articles/9870Test/; https://doaj.org/toc/2167-8359Test
DOI: 10.7717/peerj.9870
الوصول الحر: https://doaj.org/article/861048c30dc64772a60243ea6bce2fbeTest
رقم الانضمام: edsdoj.861048c30dc64772a60243ea6bce2fbe
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21678359
DOI:10.7717/peerj.9870