دورية أكاديمية

All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS

التفاصيل البيبلوغرافية
العنوان: All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS
المؤلفون: Kiskinis, Evangelos, Kralj, Joel M., Zou, Peng, Weinstein, Eli N., Zhang, Hongkang, Tsioras, Konstantinos, Wiskow, Ole, Ortega, J. Alberto, Eggan, Kevin, Cohen, Adam E.
المصدر: Kiskinis, Evangelos, Joel M. Kralj, Peng Zou, Eli N. Weinstein, Hongkang Zhang, Konstantinos Tsioras, Ole Wiskow, J. Alberto Ortega, Kevin Eggan, and Adam E. Cohen. 2018. “All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS.” Stem Cell Reports 10 (6): 1991-2004. doi:10.1016/j.stemcr.2018.04.020. http://dx.doi.org/10.1016/j.stemcr.2018.04.020Test.
بيانات النشر: Elsevier, 2018.
سنة النشر: 2018
المجموعة: FAS Scholarly Articles
HMS Scholarly Articles
مصطلحات موضوعية: all-optical electrophysiology, iPSC, motor neurons, ALS
الوصف: Summary Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, “Optopatch,” pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation.
نوع الوثيقة: Journal Article
اللغة: English
العلاقة: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993648/pdfTest/; Stem Cell Reports
DOI: 10.1016/j.stemcr.2018.04.020
الوصول الحر: http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298493Test
حقوق: open
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAATest
رقم الانضمام: edshld.1.37298493
قاعدة البيانات: Digital Access to Scholarship at Harvard (DASH)