دورية أكاديمية

Americium(III) Capture Using Phosphonic Acid-Functionalized Silicas with Different Mesoporous Morphologies: Adsorption Behavior Study and Mechanism Investigation by EXAFS/XPS.

التفاصيل البيبلوغرافية
العنوان: Americium(III) Capture Using Phosphonic Acid-Functionalized Silicas with Different Mesoporous Morphologies: Adsorption Behavior Study and Mechanism Investigation by EXAFS/XPS.
المؤلفون: Wen Zhang1, Xihong He1, Gang Ye1 yegang@tsinghua.edu.cn, Rong Yi1, Jing Chen1 jingxia@tsinghua.edu.cn
المصدر: Environmental Science & Technology. 6/17/2014, Vol. 48 Issue 12, p6874-6881. 8p.
مصطلحات موضوعية: AMERICIUM, PHOSPHONIC acids, SILICA, ADSORPTION (Chemistry), RADIOISOTOPES & the environment
مستخلص: Efficient capture of highly toxic radionuclides with long half-lives such as Ameridum-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by 31P /13C /29Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(lII) in bidentate fashion, and Eu(P (O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste. [ABSTRACT FROM AUTHOR]
Copyright of Environmental Science & Technology is the property of American Chemical Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Business Source Index
الوصف
تدمد:0013936X
DOI:10.1021/es500563q