يعرض 21 - 30 نتائج من 338 نتيجة بحث عن '"LAG-3"', وقت الاستعلام: 0.71s تنقيح النتائج
  1. 21
    دورية أكاديمية
  2. 22
    دورية أكاديمية

    المصدر: International Journal of Molecular Sciences; Volume 24; Issue 10; Pages: 8582

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Molecular Oncology; https://dx.doi.org/10.3390/ijms24108582Test

  3. 23
    دورية أكاديمية
  4. 24
    دورية أكاديمية

    المصدر: Cancers; Volume 15; Issue 4; Pages: 1106

    وصف الملف: application/pdf

    العلاقة: Cancer Immunology and Immunotherapy; https://dx.doi.org/10.3390/cancers15041106Test

  5. 25
    دورية أكاديمية

    المصدر: International Journal of Molecular Sciences; Volume 24; Issue 2; Pages: 1390

    مصطلحات موضوعية: NKT, immune checkpoint, PD-1, LAG-3, TIGIT, preeclampsia

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Molecular Immunology; https://dx.doi.org/10.3390/ijms24021390Test

  6. 26
    دورية أكاديمية

    المصدر: Viruses; Volume 15; Issue 1; Pages: 147

    مصطلحات موضوعية: LAG-3, Ligand, T cell dysfunction, viral infections

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Viral Immunology, Vaccines, and Antivirals; https://dx.doi.org/10.3390/v15010147Test

  7. 27
    دورية أكاديمية

    المصدر: Siberian journal of oncology; Том 22, № 2 (2023); 34-42 ; Сибирский онкологический журнал; Том 22, № 2 (2023); 34-42 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    العلاقة: https://www.siboncoj.ru/jour/article/view/2527/1093Test; Kipps T.J., Stevenson F.K., Wu C.J., Croce C.M., Packham G., Wierda W.G., O’Brien S., Gribben J., Rai K. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017; 3: 1–22. doi:10.1038/nrdp.2016.96.; Chiorazzi N., Rai K.R., Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005; 352(8): 804–15. doi:10.1056/NEJMra041720.; Yosifov D.Y., Wolf C., Stilgenbauer S., Mertens D. From Biology to Therapy: The CLL Success Story. Hemasphere. 2019; 3(2). doi:10.1097/HS9.0000000000000175.; Кравченко Д.В., Свирновский А.И. Хронический лимфоцитарный лейкоз: клиника, диагностика, лечение. Гомель, 2017. 117 с.; Craig F.E., Foon K.A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008; 111(8): 3941–67. doi:10.1182/blood-2007-11-120535.; Гуськова Н.К., Селютина О.Н., Новикова И.А., Максимов А.Ю., Ноздричева А.С., Абакумова С.В. Морфологические и иммунофенотипические особенности моноклональной популяции В-лимфоцитов при хроническом лимфолейкозе. Южно-Российский онкологический журнал. 2020; 1(3): 27–35. doi:10.37748/2687-0533-2020-1-3-3.; Rodríguez-Vicente A.E., Díaz M.G., Hernández-Rivas J.M. Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet. 2013; 206(3): 49–62. doi:10.1016/j.cancergen.2013.01.003.; Eichhorst B., Robak T., Montserrat E., Ghia P., Niemann C.U., Kater A.P., Gregor M., Cymbalista F., Buske C., Hillmen P., Hallek M., Mey U.; ESMO Guidelines Committee. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021; 32(1): 23–33. doi:10.1016/j.annonc.2020.09.019.; Baliakas P., Mattsson M., Stamatopoulos K., Rosenquist R. Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Intern Med. 2016; 279(4): 347–57. doi:10.1111/joim.12455.; Brown J.R., Hillmen P., O’Brien S., Barrientos J.C., Reddy N.M., Coutre S.E., Tam C.S., Mulligan S.P., Jaeger U., Barr P.M., Furman R.R., Kipps T.J., Cymbalista F., Thornton P., Caligaris-Cappio F., Delgado J., Montillo M., DeVos S., Moreno C., Pagel J.M., Munir T., Burger J.A., Chung D., Lin J., Gau L., Chang B., Cole G., Hsu E., James D.F., Byrd J.C. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018; 32(1): 83–91. doi:10.1038/leu.2017.175.; Taghiloo S., Allahmoradi E., Ebadi R., Tehrani M., HosseiniKhah Z., Janbabaei G., Shekarriz R., Asgarian-Omran H. Upregulation of Galectin-9 and PD-L1 Immune Checkpoints Molecules in Patients with Chronic Lymphocytic Leukemia. Asian Pac J Cancer Prev. 2017; 18(8): 2269–74. doi:10.22034/APJCP.2017.18.8.2269.; Mohammed Basabaeen A.A., Abdelgader E.A., Babekir E.A., Abdelrahim S.O., Eltayeb N.H., Altayeb O.A., Fadul E.A., Sabo A., Ibrahim I.K. TP53 Gene 72 Arg/Pro (rs1042522) Single Nucleotide Polymorphism Contribute to Increase the Risk of B-Chronic Lymphocytic Leukemia in the Sudanese Population. Asian Pac J Cancer Prev. 2019; 20(5): 1579–85. doi:10.31557/APJCP.2019.20.5.1579.; Joshi N.S., Cui W., Chandele A., Lee H.K., Urso D.R., Hagman J., Gapin L., Kaech S.M. Inflammation directs memory precursor and short-lived efector CD8(+) T cell fates via the graded expression of Tbet transcription factor. Immunity. 2007; 27(2): 281–95. doi:10.1016/j.immuni.2007.07.010.; Fischer K., Bahlo J., Fink A.M., Goede V., Herling C.D., Cramer P., Langerbeins P., von Tresckow J., Engelke A., Maurer C., Kovacs G., Herling M., Tausch E., Kreuzer K.A., Eichhorst B., Böttcher S., Seymour J.F., Ghia P., Marlton P., Kneba M., Wendtner C.M., Döhner H., Stilgenbauer S., Hallek M. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016; 127(2): 208–15. doi:10.1182/blood-2015-06-651125.; Fischer K., Cramer P., Busch R., Böttcher S., Bahlo J., Schubert J., Pfüger K.H., Schott S., Goede V., Isfort S., von Tresckow J., Fink A.M., Bühler A., Winkler D., Kreuzer K.A., Staib P., Ritgen M., Kneba M., Döhner H., Eichhorst B.F., Hallek M., Stilgenbauer S., Wendtner C.M. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012; 30(26): 3209–16. doi:10.1200/JCO.2011.39.2688.; Eichhorst B., Fink A.M., Bahlo J., Busch R., Kovacs G., Maurer C., Lange E., Köppler H., Kiehl M., Sökler M., Schlag R., Vehling-Kaiser U., Köchling G., Plöger C., Gregor M., Plesner T., Trneny M., Fischer K., Döhner H., Kneba M., Wendtner C.M., Klapper W., Kreuzer K.A., Stilgenbauer S., Böttcher S., Hallek M.; international group of investigators; German CLL Study Group (GCLLSG). First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016; 17(7): 928–42. doi:10.1016/S1470-2045(16)30051-1.; Al-Sawaf O., Hallek M., Fischer K. The role of minimal residual disease in chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2022; 20(2): 97–103.; Böttcher S., Ritgen M., Fischer K., Stilgenbauer S., Busch R.M., Fingerle-Rowson G., Fink A.M., Bühler A., Zenz T., Wenger M.K., Men-dila M., Wendtner C.M., Eichhorst B.F., Döhner H., Hallek M.J., Kneba M. Minimal residual disease quantifcation is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012; 30(9): 980–8. doi:10.1200/JCO.2011.36.9348.; Goede V., Fischer K., Busch R., Engelke A., Eichhorst B., Wendtner C.M., Chagorova T., de la Serna J., Dilhuydy M.S., Illmer T., Opat S., Owen C.J., Samoylova O., Kreuzer K.A., Stilgenbauer S., Döhner H., Langerak A.W., Ritgen M., Kneba M., Asikanius E., Humphrey K., Wenger M., Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014; 370(12): 1101–10. doi:10.1056/NEJMoa1313984.; Kovacs G., Robrecht S., Fink A.M., Bahlo J., Cramer P., von Tresckow J., Maurer C., Langerbeins P., Fingerle-Rowson G., Ritgen M., Kneba M., Döhner H., Stilgenbauer S., Klapper W., Wendtner C.M., Fischer K., Hallek M., Eichhorst B., Böttcher S. Minimal Residual Disease Assessment Improves Prediction of Outcome in Patients With Chronic Lymphocytic Leukemia (CLL) Who Achieve Partial Response: Comprehensive Analysis of Two Phase III Studies of the German CLL Study Group. J Clin Oncol. 2016; 34(31): 3758–65. doi:10.1200/JCO.2016.67.1305.; Dimier N., Delmar P., Ward C., Morariu-Zamfr R., Fingerle-Rowson G., Bahlo J., Fischer K., Eichhorst B., Goede V., van Dongen J.J.M., Ritgen M., Böttcher S., Langerak A.W., Kneba M., Hallek M. A model for predicting efect of treatment on progression-free survival using MRD as a surrogate end point in CLL. Blood. 2018; 131(9): 955–62. doi:10.1182/blood-2017-06-792333.; Molica S., Giannarelli D., Montserrat E. Minimal Residual Disease and Survival Outcomes in Patients With Chronic Lymphocytic Leukemia: A Systematic Review and Meta-analysis. Clin Lymphoma Myeloma Leuk. 2019; 19(7): 423–30. doi:10.1016/j.clml.2019.03.014.; Huard B., Tournier M., Hercend T., Triebel F., Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994; 24(12): 3216–21. doi:10.1002/eji.1830241246.; Shapiro M., Herishanu Y., Katz B.Z., Dezorella N., Sun C., Kay S., Polliack A., Avivi I., Wiestner A., Perry C. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017; 102(5): 874–82. doi:10.3324/haematol.2016.148965.; Kotaskova J., Tichy B., Trbusek M., Francova H.S., Kabathova J., Malcikova J., Doubek M., Brychtova Y., Mayer J., Pospisilova S. High expression of lymphocyte-activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment-free survival. J Mol Diagn. 2010; 12(3): 328–34. doi:10.2353/jmoldx.2010.090100.; Никитин Е.А., Бялик Т.Е., Зарицкий А.Ю., Исебер Л., Капланов К.Д., Лопаткина Т.Н., Луговская С.А., Мухортова О.В., Османов Е.А., Поддубная И.В., Самойлова О.С., Стадник Е.А., Фалалеева Н.А., Байков В.В., Ковригина А.М., Невольских А.А., Иванов С.А., Хайлова Ж.В., Геворкян Т.Г. Хронический лимфоцитарный лейкоз/лимфома из малых лимфоцитов. Клинические рекомендации. Современная Онкология. 2020; 22(3): 24–44. doi:10.26442/18151434.2020.3.200385.; Rawstron A.C., Villamor N., Ritgen M., Böttcher S., Ghia P., Zehnder J.L., Lozanski G., Colomer D., Moreno C., Geuna M., Evans P.A., Natkunam Y., Coutre S.E., Avery E.D., Rassenti L.Z., Kipps T.J., CaligarisCappio F., Kneba M., Byrd J.C., Hallek M.J., Montserrat E., Hillmen P. International standardized approach for fow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007; 21(5): 956–64. doi:10.1038/sj.leu.2404584.; Кит О.И., Тимофеева С.В., Ситковская А.О., Новикова И.А., Колесников Е.Н. Биобанк ФГБУ «НМИЦ онкологии» Минздрава России как ресурс для проведения исследований в области персонифицированной медицины. Современная онкология. 2022; 24(1): 6–11. doi:10.26442/18151434.2022.1.201384.; Wierz M., Pierson S., Guyonnet L., Viry E., Lequeux A., Oudin A., Niclou S.P., Ollert M., Berchem G., Janji B., Guérin C., Paggetti J., Moussay E. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018; 131(14): 1617–21. doi:10.1182/blood-2017-06-792267.; Sordo-Bahamonde C., Lorenzo-Herrero S., González-Rodríguez A.P., Payer Á.R., González-García E., López-Soto A., Gonzalez S. LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021; 13(9): 2112. doi:10.3390/cancers13092112.; Woo S.R., Turnis M.E., Goldberg M.V., Bankoti J., Selby M., Nirschl C.J., Bettini M.L., Gravano D.M., Vogel P., Liu C.L., Tangsombatvisit S., Grosso J.F., Netto G., Smeltzer M.P., Chaux A., Utz P.J., Workman C.J., Pardoll D.M., Korman A.J., Drake C.G., Vignali D.A. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72(4): 917–27. doi:10.1158/0008-5472.CAN-11-1620.; Grosso J.F., Kelleher C.C., Harris T.J., Maris C.H., Hipkiss E.L., De Marzo A., Anders R., Netto G., Getnet D., Bruno T.C., Goldberg M.V., Pardoll D.M., Drake C.G. LAG-3 regulates CD8+ T cell accumulation and efector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007; 117(11): 3383–92. doi:10.1172/JCI31184.; Qi Y., Chen L., Liu Q., Kong X., Fang Y., Wang J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Efective Immunotherapy Strategy. Front Immunol. 2021; 11. doi:10.3389/fmmu.2020.563258.; Liu D. Cancer biomarkers for targeted therapy. Biomark Res. 2019; 7: 25. doi:10.1186/s40364-019-0178-7.; Grzywnowicz M., Karabon L., Karczmarczyk A., Zajac M., Skorka K., Zaleska J., Wlasiuk P., Chocholska S., Tomczak W., BojarskaJunak A., Dmoszynska A., Frydecka I., Giannopoulos K. The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma. 2015; 56(10): 2908–13. doi:10.3109/10428194.2015.1017820.; Li M., Sun X.H., Zhu X.J., Jin S.G., Zeng Z.J., Zhou Z.H., Yu Z., Gao Y.Q. HBcAg induces PD-1 upregulation on CD4+T cells through activation of JNK, ERK and PI3K/AKT pathways in chronic hepatitisB-infected patients. Lab Invest. 2012; 92(2): 295–304. doi:10.1038/labinvest.2011.157.; McClanahan F., Riches J.C., Miller S., Day W.P., Kotsiou E., Neuberg D., Croce C.M., Capasso M., Gribben J.G. Mechanisms of PDL1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model. Blood. 2015; 126(2): 212–21. doi:10.1182/blood-2015-02-626754.; Ramsay A.G., Clear A.J., Fatah R., Gribben J.G. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012; 120(7): 1412–21. doi:10.1182/blood-2012-02-411678.; Табаков Д.В., Заботина Т.Н., Чантурия Н.В., Захарова Е.Н., Воротников И.К., Сельчук В.Ю., Соколовский В.В., Петровский А.В. Взаимосвязь экспрессии GITR, Lag-3 и PD-1 с основными показателями системного и локального иммунитета у больных раком молочной железы. Современная онкология. 2021; 23(3): 457–65. doi:10.26442/18151434.2021.3.200809.; Wang Q., Zhang J., Tu H., Liang D., Chang D.W., Ye Y., Wu X. Soluble immune checkpoint-related proteins as predictors of tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients. J Immunother Cancer. 2019; 7(1): 334. doi:10.1186/s40425-019-0810-y.; He Y., Wang Y., Zhao S., Zhao C., Zhou C., Hirsch F.R. sLAG-3 in non-small-cell lung cancer patients’ serum. Onco Targets Ther. 2018; 11: 4781–4. doi:10.2147/OTT.S164178.; Eichhorst B., Fink A.M., Busch R., Kovacs G., Maurer C., Lange E., Köppler H., Kiehl M.G., Soekler M., Schlag R., Vehling-Kaiser U., Köchling G.R.A., Plöger C., Gregor M., Plesner T., Trneny M., Fischer K., Döhner H., Kneba M., Wendtner C.M., Klapper W., Kreuzer K.A., Stilgenbauer S., Böttcher S., Hallek M. Frontline chemoimmunotherapy with fudarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) shows superior efcacy in comparison to bendamustine (B) and rituximab (BR) in previously untreated and physically ft patients (pts) with advanced chronic lymphocytic leukemia (CLL): Final analysis of an international, randomized study of the German CLL Study Group (GCLLSG) (CLL10 study). Blood. 2014; 124 (21): 19. doi:10.1182/blood.V124.21.19.19.; https://www.siboncoj.ru/jour/article/view/2527Test

  8. 28
    دورية أكاديمية
  9. 29
  10. 30