دورية أكاديمية

Investigation of the Mitigation of DMSO-Induced Cytotoxicity by Hyaluronic Acid following Cryopreservation of Human Nucleus Pulposus Cells.

التفاصيل البيبلوغرافية
العنوان: Investigation of the Mitigation of DMSO-Induced Cytotoxicity by Hyaluronic Acid following Cryopreservation of Human Nucleus Pulposus Cells.
المؤلفون: Munesada, Daiki1 (AUTHOR) munesada.daiki.k@tokai.ac.jp, Sakai, Daisuke1,2 (AUTHOR) daisakai@is.icc.u-tokai.ac.jp, Nakamura, Yoshihiko3 (AUTHOR) kahiko@is.icc.u-tokai.ac.jp, Schol, Jordy1,2,3 (AUTHOR) me091130@tsc.u-tokai.ac.jp, Matsushita, Erika3 (AUTHOR), Tamagawa, Shota1,4 (AUTHOR) k.sako0626@gmail.com, Sako, Kosuke1 (AUTHOR) ogswr.a.817@gmail.com, Ogasawara, Shota1 (AUTHOR) sato-m@is.icc.u-tokai.ac.jp, Sato, Masato1,2 (AUTHOR) masahiko@is.icc.u-tokai.ac.jp, Watanabe, Masahiko1,2 (AUTHOR)
المصدر: International Journal of Molecular Sciences. Aug2023, Vol. 24 Issue 15, p12289. 13p.
مصطلحات موضوعية: *NUCLEUS pulposus, *HYALURONIC acid, *INTERVERTEBRAL disk, *REACTIVE oxygen species, *PROGENITOR cells, *DIMETHYL sulfoxide, *CRYOPROTECTIVE agents
مستخلص: To develop an off-the-shelf therapeutic product for intervertebral disc (IVD) repair using nucleus pulposus cells (NPCs), it is beneficial to mitigate dimethyl sulfoxide (DMSO)-induced cytotoxicity caused by intracellular reactive oxygen species (ROS). Hyaluronic acid (HA) has been shown to protect chondrocytes against ROS. Therefore, we examined the potential of HA on mitigating DMSO-induced cytotoxicity for the enhancement of NPC therapy. Human NPC cryopreserved in DMSO solutions were thawed, mixed with equal amounts of EDTA-PBS (Group E) or HA (Group H), and incubated for 3–5 h. After incubation, DMSO was removed, and the cells were cultured for 5 days. Thereafter, we examined cell viability, cell proliferation rates, Tie2 positivity (a marker of NP progenitor cells), and the estimated numbers of Tie2 positive cells. Fluorescence intensity of DHE and MitoSOX staining, as indicators for oxidative stress, were evaluated by flow cytometry. Group H showed higher rates of cell proliferation and Tie2 expressing cells with a trend toward suppression of oxidative stress compared to Group E. Thus, HA treatment appears to suppress ROS induced by DMSO. These results highlight the ability of HA to maintain NPC functionalities, suggesting that mixing HA at the time of transplantation may be useful in the development of off-the-shelf NPC products. [ABSTRACT FROM AUTHOR]
قاعدة البيانات: Academic Search Index
الوصف
تدمد:16616596
DOI:10.3390/ijms241512289