دورية أكاديمية

New genetic resources in wheat breeding for an increased grain protein content ; Новые генетические ресурсы в селекции пшеницы на увеличение содержания белка в зерне

التفاصيل البيبلوغرافية
العنوان: New genetic resources in wheat breeding for an increased grain protein content ; Новые генетические ресурсы в селекции пшеницы на увеличение содержания белка в зерне
المؤلفون: O. P. Mitrofanova, A. G. Khakimova, О. П. Митрофанова, А. Г. Хакимова
المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 4 (2016); 545-554 ; Вавиловский журнал генетики и селекции; Том 20, № 4 (2016); 545-554 ; 2500-3259 ; 2500-0462
بيانات النشر: Institute of Cytology and Genetics of Siberian Branch of the RAS
سنة النشر: 2016
المجموعة: Vavilov Journal of Genetics and Breeding / Вавиловский журнал генетики и селекции
مصطلحات موضوعية: селекция, Triticum, Aegilops, grain protein content, GPC-genes, NAC transcription factor, senescence, remobilization, molecular markers, breeding, содержание белка в зерне, гены GPC, NAC-факторы транскрипции, старение, ремобилизация, молекулярные маркеры
الوصف: The present review offers an overview of genetic research on grain protein content (GPC) in various Triticum L. and Aegilops L. species. Regularities in geographic variability of GPC and the results of a longterm screening of accessions from the VIR collection for this trait are considered. On the basis of these assessments, a core-collection of genetic sources with high GPC has been formed. It includes the diploid Aegilops species as donors of B, G and D genomes for allopolyploid wheats, as well as accessions of di-, tetra- and hexaploid wheat species. The use of highprotein sources in wheat breeding in the United States and Canada in the 1970’s–1980’s resulted in the bread wheat GPC increase by 0.5–3.0 %; however, further purposeful attempts at increasing GPC by traditional breeding methods failed. A breakthrough in increasing the total GPC has been achieved as a result of molecular genetics methods and molecular markers development. For the first time, a functional locus, or the Gpc-B1 gene (chromosome 6BS) affecting the accumulation of protein, Zn and Fe in grain, was identified in T. dicoccoides, cloned and studied in detail. The application of molecular markers has revealed the active allele of this gene in some landraces and old cul-tivars of T. dicoccum, T. durum, T. spelta and T. aestivum. Moreover, Gpc-A1, Gpc-D1, and Gpc-2 wheat genes have been found in chromosomes 6A, 6D and homeologous group 2, respectively. All these genes have been identified as NAC transcription factors, which play an important role in the accelerated senescence of plants and remobilization of nutrients from leaves to grain. The genes related to Gpc-B1 from T. dicoccoides were found in the G genome of T. timopheevii and B (=S) genome of different species of Aegilops sect. sitopsis. Functional Gpc-B1 alleles have been introduced into commercial tetra- and hexaploid wheat cultivars, and it resulted in the creation of new highprotein and high-yield cultivars and series of nearly isogenic lines in different countries. They are ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
العلاقة: https://vavilov.elpub.ru/jour/article/view/704/807Test; Вавилов Н.И. Научные основы селекции пшеницы. М.; Л.: Сельхозгиз, 1935.; Дорофеев В.Ф., Удачин Р.А., Семенова Л.В., Новикова М.В., Градчанинова О.Д., Шитова И.П., Мережко А.Ф., Филатенко А.А. Пшеницы мира. Л.: ВО «Агропромиздат». Ленингр. oтд-ние, 1987.; Дорофеев В.Ф., Якубцинер М.М., Семенова Л.В., Руденко М.И., Новикова М.В., Степанова Г.И., Охотникова Т.В., Шитова И.П. Высококачественные пшеницы. Каталог. Л., 1972;86.; Иванов Н.Н. Химический состав пшениц СССР. Результаты географических опытов 1923–1926. Тр. по прикл. ботан., генет. и селекции. 1928-1929;XXI(4):47-320.; Иванов Н.Н. Проблема белка в растениеводстве. М.; Л.: ОГИЗ-Сельхозгиз, Гос. изд-во с.-х. лит-ры, 1947:21-30.; Иванов Н.Н., Княгиничев М.И. Биохимия пшеницы. Биохимия культурных растений. М.; Л.: Сельхозгиз, 1936;5-86.; Каталог образцов мировой коллекции ВИР с характеристикой содержания белка и аминокислот. Л., 1972;100.; Каталог мировой коллекции ВИР. Пшеницы с высоким и повышенным содержанием белка в зерне. Л., 1976;182.; Каталог мировой коллекции ВИР. Твердая пшеница (новейшие поступления с характеристикой технологических свойств зерна). Л., 1977а;203.; Каталог мировой коллекции ВИР. Высокобелковые пшеницы. Л., 1977б;215.; Каталог мировой коллекции ВИР. Виды рода Triticum L. (Характеристика образцов по содержанию белка и лизина в зерне). Л., 1983;364.; Каталог мировой коллекции ВИР. Пшеница. Комплексная оценка перспективных по качеству зерна образцов яровой мягкой пшеницы в условиях Центрально-Черноземного района России. Санкт-Петербург, 1999;698.; Каталог мировой коллекции ВИР. Пшеница. Технологические и агробиологические характеристики образцов яровой мягкой пшеницы в условиях различных регионов России. Санкт-Петербург, 2003;744.; Княгиничев М.И. Биохимия пшеницы. Л.: Сельхозгиз, 1951.; Конарев В.Г. Молекулярно-генетические аспекты оценки исходного материала на белок. Тр. по прикл. ботан., генет., селекции. 1975;54(1):163-172.; Конарев В.Г. Белки пшеницы. М.: Колос, 1980:193-214.; Конарев В.Г., Чмелева З.В. Характеристика мировых ресурсов пшеницы по содержанию в зерне белка и лизина и фонд высокобелковых пшениц. Тр. по прикл. ботан., генет. и селекции. 1977;59(3):31-38.; Конарев В.Г., Чмелева З.В., Мойса И.И. Состав, структура и свойства клейковины разного происхождения. Бюлл. ВИР. 1979;92:69-75.; Крупнов В.А., Крупнова О.В. Генетическая архитектура содержания белка в зерне пшеницы. Генетика. 2012;48(2):140-159.; Покровская Н.Ф. Количественный и качественный состав белка и крахмала мягких пшениц в зависимости от районов выращивания. Вестн. с.-х. науки. 1967:6:37-44.; Покровская Н.Ф., Хорева В.И. Содержание лизина и триптофана в зерне пшениц разной плоидности. Докл. ВАСХНИЛ. 1971;11: 8-11.; Тютерев С.Л., Чмелева З.В., Мойса И.И., Дорофеев В.Ф. Изучение содержания белка и незаменимых аминокислот в зерне видов пшеницы и их диких сородичей. Тр. по прикл. ботан., генет. и селекции. 1973;1:222-241.; Фляксбергер К. Белок в зерне пшениц земного шара. Социалистическое растениеводство. 1932;1:15-31.; Якубцинер М.М., Покровская Н.Ф. Биохимическая характеристика зерна тетраплоидных пшениц. С.-х. биология. 1969;IV(3): 348-357.; Якубцинер М.М., Покровская Н.Ф. Биохимическая характеристика зерна гексаплоидных пшениц. С.-х. биология. 1971а;VI(1): 22-28.; Якубцинер М.М., Покровская Н.Ф. Биохимическая характеристика зерна диплоидных пшениц. С.-х. биология. 1971б;VI(5): 669-675.; Asplund L., Bergkvist G., Leino M.W., Westerbergh A., Weih M. Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content. PLoS ONE. 2013;8(3):e59704. DOI 10.1371/journal.pone.0059704.; Asplund L., Hagenblad J., Leino M.W. Re-evaluating the history of the wheat domestication gene NAM-B1 using historical plant material. J. Archaeol. Sci. 2010;37:2303-2307. DOI 10.1016/j.jas.2010.04.003.; Avivi L. High protein content in wild tetraploid Triticum dicoccoides Korn. Proc. 5th Intern. Wheat Genetic Symp. Ed. S. Ramanujam. Indian Society of Genetics and Plant Breeding, New Delhi, India. 1978:372-380.; Avni R., Zhao R., Pearce S., Jun Y., Uauy C., Tabbita F., Fahima T., Slade A., Dubcovsky J., Distelfeld A. Functional characterization of GPC-1 genes in hexaploid wheat. Planta. 2014;239:313-324. DOI 10.1007/s00425-013-1977-y.; Aykut Tonk F., Lker E., Tosun M. A study to incorporate high protein content from tetraploid wheat (T. turgidum dicoccoides) to hexaploid wheat (T. aestivum vulgare). Turk. J. Field Crops. 2010;15(1):69-72.; Balfourier F., Roussel V., Strelchenko P., Exbrayat-Vinson F., Sourdille P., Boutet G., Koenig J., Ravel C., Mitrofanova O., Beckert M., Charmet G. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor. Appl. Genet. 2007;114:1265-1275. DOI 10.1007/s00122-007-0517-1.; Balyan H.S., Gupta P.K., Kumar S., Dhariwal R., Jaiswal V., Tyagi S., Agarwal P., Gahlaut V., Kumari S. Genetic improvement of grain protein and other health-related constituents of wheat grain. Plant Breeding. 2013. available at http://wileyonlinelibrary.comTest. DOI 10.1111/pbr.12047.; Brevis J.C., Dubcovsky J. Effects of the chromosome region including the Gpc-B1 locus on wheat grain and protein yield. Crop Sci. 2010;50:93-104. DOI 10.2135/cropsci2009.02.0057.; Brevis J.C., Morris C.F., Manthey F., Dubcovsky J. Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. J. Cereal Sci. 2010;51:357-365. DOI 10.1016/j.jcs.2010.02.004.; Cantrell R.G., Joppa L.R. Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Sci. 1991;31(3):645-649.; Cantu D., Pearce S.P., Distelfeld A., Christiansen M.W., Uauy C., Akhunov E., Fahima T., Dubcovsky J. Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics. 2011;12: 492-509. DOI 10.1186/1471-2164-12-492.; Carter A.H., Santra D.K., Kidwell K.K. Assessment of the effects of the Gpc-B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific Northwest region of the USA. Plant Breeding. 2012; 131:62-68. DOI 10.1111/j.1439-0523.2011.01900.x.; Cormier F., Throude M., Ravel C., Le Gouis J., Leveugle M., Lafarge S., Exbrayat F., Duranton N., Praud S. Detection of NAM-A1 natural variants in bread wheat reveals differences in haplotype distribution between a worldwide core collection and European elite germplasm. Agronomy. 2015;5:143-151. DOI 10.3390/agronomy5020143.; DePauw R.M., Knox R.E., Humphreys D.G., Thomas J.B., Fox S.L., Brown P.D., Singh A.K., Pozniak C., Randhawa H.S., Fowler D.B., Graf R.J., Hucl P. New breeding tools impact Canadian commercial farmer fields. Czech. J. Genet. Plant. 2011;47:28-34.; DePauw R.M., Townley-Smith T.F., Humpreys G., Knox R.E., Clarke F.R., Clarke J.M. Lilian hard red spring wheat. 2004. available at http://www.pgdc.ca/pdfs/wrt/cultivardescriptions/Lillian.pdfTest.; Distelfeld A., Cakmak I., Peleg Z., Ozturk L., Yazici A.M., Budak H., Saranga Y., Fahima T. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol. Plantarum. 2007;129:635-643. DOI 10.1111/j.1399-3054.2006.00841.x.; Distelfeld A., Pearce S.P., Avni R., Scherer B., Uauy C., Piston F., Slade A., Zhao R., Dubcovsky J. Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol. Biol. 2012; 78:515-524. DOI 10.1007/S11103-012-9881-6.; Distelfeld A., Uauy C., Fahima T., Dubcovsky J. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 2006;169:753-763. DOI 10.1111/j.1469-8137.2005.01627.x.; Distelfeld A., Uauy C., Olmos S., Schlatter A.R., Dubcovsky J., Fahima T. Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and f 350-kb region on rice chromosome 2. Funct. Integr. Genomics. 2004;4:59-66. DOI 10.1007/S10142-003-0097-3.; Dubcovsky J., Fahima T., Uauy C., Distelfeld A. NAC from wheat for increasing grain protein content. United States Patent No.: US 7820882B2. Oct. 26, 2010. available at https://books.google.com.tr/patents/US7820882Test.; Eagles H.A., McLean R.B., Eastwood R.F., Appelbee M.-J., Cane K., Martin P.J., Wallwork H. High-yielding lines of wheat carring GpcB1 adapted to Mediterranean-type environments of the south and west of Australia. Crop Pasture Sci. 2014;65(9):854-861. http://dx.doi.org/10.1071/cp14106Test.; Fox S.L., Townley-Smith T.F., Humphreys D.G., McCallum B.D., Fetch T.G., Gaudet D.A., Gilbert J.A., Menzies J.G., Noll J.S., Howes N.K. Somerset hard red spring wheat. 2005. available at http://www.pgdc.ca/pdfs/wrt/cultivardescriptions/Somerset.pdfTest.; Fu D., Uauy C., Blechl A., Dubcovsky J. RNA interference for wheat functional gene analysis. Transgenic Res. 2007;16:689-701. DOI 10.1007/s11248-007-9150-7.; Hagenblad J., Aspland L., Balfourier F., Ravel C., Leino M.W. Strong presence of the high grain protein content allele NAM-B1 in Fennoscandian wheat. Theor. Appl. Genet. 2012;125:1677-1686. DOI 10.1007/s00122-012-1943-2.; Hale I., Zhang X., Fu D., Dubcovsky J. Registration of wheat lines carrying the partial stripe rusr resistance gene Yr36 without the GpcB1 allele for high grain protein content. J. Plant Regist. 2012;7(1): 108-112.; Hu X.-G., Wu B.-H., Liu D.-C., Wei Y.-M., Gao S.-B., Zheng Y.-L. Variation and their relationship of NAM-G1 gene and grain protein content in Triticum timopheevii Zhuk. J. Plant Physiol. 2013;170: 330-337. http://dx.doi.org/10.1016/j.jplph.2012.10.009Test.; Hu X.-G., Wu B.-H., Yan Z.-H., Dai S.-F., Zhang L.-Q., Liu D.-C., Zheng Y.-L. Characteristics and polymorphism of NAM gene from Aegilops section sitopsis species. Afr. J. Agric. Res. 2012;7(37): 5252-5258. DOI 10.5897/AJAR12.078.; Humphreys D.G., Townley-Smith T.F., Lukow O., McCallum B., Gaudet D., Gilbert J., Fetch T., Menzies J., Brown D., Czarnecki E. Burnside extra strong hard red spring wheat. 2009. Available at http://www.pgdc.ca/pdfs/wrt/cultivardescriptions/Burnside.pdfTest.; Hussein H.A., Ebtissam H.A.H., El-Sayed O.E., Al-Ansary A.M.F., Khatab S.A., Sally A.A.R. Inter specific crosses and marker assisted selection for improving the nutritional value of Egyptian wheat cultivars. Int. J. Agric. Res. 2014;9(3):119-135. DOI 10.3923/ijar.2014.113.135.; Johnson V.A. Wheat Protein. Basic Life Sci. 1976; Mar 1-7;8:371-385.; Johnson V.A., Mattern P.J., Peterson C.J., Kuhr S.L. Improvement of wheat protein by traditional breeding and genetic techniques. Cereal Chem. 1985;62(5):350-355.; Joppa L.R., Cantrell R.G. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci. 1990;30:1059-1064. DOI 10.2135/cropsci1990.0011183X003000050021x.; Joppa L.R., Du C., Hart G.E., Hareland G.A. Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci. 1997;37:1586-1589. DOI 10.2135/cropsci1997.0011183X003700050030x.; Kade M.A., Barneix J., Olmos S., Dubcovsky J. Nitrogen uptake and remobilization in tetraploid Langdon durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breeding. 2005;124:343-349. DOI 10.1111/j.1439-0523.2005.01110.x.; Khan I.A., Procunier J.D., Humphreys D.G., Tranquilli G., Schlatter A.R., Marcucci-Poltri S., Frohberg R., Dubcovsky J. Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci. 2000;40:518-524.; Klindworth D.L., Hareland G.A., Elias E.M., Faris J.D., Chao S., Xu S.S. Agronomic and quality characteristics of two new sets of Langdon durum-wild emmer wheat chromosome substitution lines. J. Cereal Sci. 2009;50:29-35. DOI 10.1016/j.jcs.2009.02.003.; Kumar J., Jaiswal V., Kumar A., Kumar N., Mir R.R., Kumar S., Dhariwal R., Tyagi S., Khandelwal M., Prabhu K.V., Prasad R., Balyan H.S., Gupta P.K. Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crop. Res. 2011;123:226-233. DOI 10.1016/j.fcr.2011.05.013.; Maphosa L., Collins N.C., Taylor J., Mather D.E. Post-anthesis heat and Gpc-B1 introgression have similar but non-additive effects in bread wheat. Funct. Plant Biol. 2014;41:1002-1008. http://dx.doi.org/10.1071/FP14060Test.; McIntosh R.A., Dubcovsky J., Rogers W.J., Rogers W.J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. 12th Intern. Wheat Genetics Symp. 8-13 September 2013;Yokohama, Japan. available at http://shigen.nig.ac.jp/wheat/komugi/genes/download.jspTest.; Mesfin A., Frohberg R., Anderson J.A. RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci. 1999;39(2): 508-513.; Mishra V.K., Gupta P.K., Arun B., Chand R., Vasistha N.K., Vishwakarma M.K., Yadav P.S., Joshi A.K. Introgression of a gene for high grain protein content (Gpc-B1) into two leading cultivars of wheat in Eastern Gangetic Plains of India through marker assisted backcross breeding. J. Plant Breed. Crop Sci. 2015;7(8):292-300. DOI 10.5897/JPBCS2015.0514.; Olmos S., Distelfeld A., Chicaiza O., Schlatter A.R., Fahima T., Echenique V., Dubkovsky J. Precise mapping of a locus affecting grain protein content in durum wheat. Theor. Appl. Genet. 2003;107: 1243-1251. DOI 10.1007/s00122-003-1377-y.; Olsen A.D., Ernst H.A., Leggio L.L., Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005;10(2):79-87. DOI 10.1016/j.tplants.2004.12.010.; Pearce S., Tabbita F., Cantu D., Buffalo V., Avni R., Vazques-Gross H., Zhao R., Conley C.J., Distelfeld A., Dubcovsky J. Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. Plant Biol. 2014;14:368-391. DOI 10.1186/s12870-014-0368-2.; Podzimska-Sroka D., O’Shea C., Gragersen P.L., Skriver K. NAC transcription factors in senescence: from molecular structure to function in crops. Planta. 2015;4:412-448. DOI 10.3390/plants4030412.; Puranik S., Sahu P.P., Srivastava P.S., Prasad M. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 2012;17(6):369-381. DOI 10.1016/j.tplants.2012.02.004.; Rahaie M., Xue G-P., Schenk P.M. The role of transcription factors in wheat under different abiotic stresses. 2013; http://dx.doi.org/10.5772/54795Test.; Randhawa H.S., Asif M., Pozniak C., Clarke J.M., Graf R.J., Fox S.L., Humphreys C., Knox R.E., DePauw R.M., Singh A.K., Cuthbert R.D., Hucl P., Spaner D. Application of molecular markers to wheat breeding in Canada. Plant Breeding. 2013;132:458-471. DOI 10.1111/pbr.12057.; Shewry P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007;46:239-250. DOI 10.1016/j.jcs.2007.06.006.; Tabbita F., Lewis S., Vouilloz J.P., Ortega M.A., Kade M., Abbate P.E., Barneix A.J. Effects of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breeding. 2013;132:48-52. DOI 10.1111/pbr.12011.; Uauy C., Brevis J.C., Dubcovsky J. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J. Exp. Bot. 2006a;57(11):2785-2794. DOI 10.1093/jxb/erl047.; Uauy C., Distelfeld A., Fahima T., Blechl A., Dubkovsky J. A NAC gene regulating senescence improves grain protein, zink, and iron content in wheat. Science. 2006b;314:1298-1301.; Vishwakarma M.K., Mishra V.K., Gupta P.K., Yadav P.S., Kumar H., Joshi A.K. Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Curr. Plant Biol. 2014; http://dx.doi.org/10.1016/j.cpb.2014.09.003Test.; Waters B.M., Uauy C., Dubcovsky J., Grusak A. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zink, and nitrogen compounds from vegetative tissues to grain. J. Exp. Bot. 2009;60(15):4263-4274. DOI 10.1093/jxb/erp257.; Wheat Applied Genomics. MASWheat Quality traits. High grain protein content. Available at http://maswheat.ucdavis.edu/protocols/HGPC/index.htmTest.; https://vavilov.elpub.ru/jour/article/view/704Test
DOI: 10.18699/VJ16.177
الإتاحة: https://doi.org/10.18699/VJ16.177Test
https://doi.org/10.1071/cp14106Test
https://doi.org/10.1016/j.jplph.2012.10.009Test
https://doi.org/10.1071/FP14060Test
https://doi.org/10.5772/54795Test
https://doi.org/10.1016/j.cpb.2014.09.003Test
https://vavilov.elpub.ru/jour/article/view/704Test
حقوق: Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access). ; Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
رقم الانضمام: edsbas.74190286
قاعدة البيانات: BASE