يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Storage proteins"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Vavilov Journal of Genetics and Breeding; Том 21, № 3 (2017); 354-359 ; Вавиловский журнал генетики и селекции; Том 21, № 3 (2017); 354-359 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/965/918Test; Agafonov A.V., Agafonova O.V. SDS-electrophoresis of endosperm proteins from Elymus species differing in genomic structure. Sibirskii Biologicheskii Zhurnal = Siberian J. Biol. 1992;3:7-12. (in Russian); Chen L., Chen F., He S., Ma L. High genetic diversity and small genetic variation among populations of Magnolia wufengensis (Magnoliaceae), revealed by ISSR and SRAP markers. Electronic J. Biotechnol. 2014;17:268-274. DOI 10.1016/j.ejbt.2014.08.003.; Ci X.Q., Chen J.Q., Li Q.M., Li J. AFLP and ISSR analysis reveals high genetic variation and inter-population differentiation in fragmented populations of the endangered Litsea szemaois (Lauraceae) from Southwest China. Plant Syst. Evol. 2008;273:237-246.; Dorogina O.V., Zhmud E.V., Zvyagina N.S. Electrophoretic spectrum variability and specificity of seed storage proteins from Astragalus species (Fabaceae). Turczaninowia. 2012;15(4):52-57. (in Russian); Frankham R. Genetics and conservation biology. Comptes Rendus Biologies. 2003;326:22-29.; Frankham R. Stress and adaptation in conservation genetics. J. Evol. Biol. 2005;18:750-755.; Frankham R., Ballou J.D., Brosco D.A. Introduction to Conservation Genetics. Cambridge: Cambr. Univ. Press, 2002.; Gitzendanner M.A., Soltis P.S. Patterns of genetic variation in rare and widespread plant congeners. Am. J. Bot. 2000;87(6):783-792.; Gordon S.P., Sloop C.M., Davis H.G., Cushman J.H. Population genetic diversity and structure of two rare vernal pool grasses in central California. Conserv. Genet. 2012;13:117-130.; Hamrick J.L., Godt M.J.W. Allozyme diversity in plant species. Plant Population Genetics, Breeding and Germplasm Resources. Eds. A.H.D. Brown, M.T. Clegg, A.L. Kahler, B.S. Weir. Sunderland: Sinauer Press, 1990.; Hamrick J.L., Godt M.J.W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. Roy. Soc. Lond. B. 1996;351: 1291-1298. http://dx.doi.org/10.1098/rstb.1996.0112Test.; Kaljund K., Jaaska V. No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcate. Biochem. System. Ecol. 2010;38:510-520.; Karron J.D., Linhart Y.B., Chaulk C.A., Robertson C.A. Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). Am. J. Bot. 1988;75(8):1114-1119.; Krasnaya kniga Respubliki Altay [The Red Book of the Altai Republic]. Novosibirsk, 1996. (in Russian); Krasnaya kniga Respubliki Tyva [The Red Book of the Republic of Tyva]. Rasteniya [Plants]. Novosibirsk, 2002. (in Russian); Krasnaya kniga Rossiyskoy Federatsii. [The Red Book of the Russian Federation]. Rasteniya i griby [Plants and Fungi]. Mosсоw, 2008. (in Russian); Lande R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Amer. Naturalist. 1993;142:911-927.; Leammli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685.; Li Y.Y., Guan S.M., Yang S.Z., Luo Y., Chen X.Y. Genetic decline and inbreeding depression in an extremely rare tree. Conserv. Genet. 2012;13:343-347.; Lopes M.S., Mendonc D., Bettencourt S.X., Borba A.R., Melo C., Baptista C., da Camara Machado A. Genetic diversity of an Azorean endemic and endangered plant species inferred from inter-simple sequence repeat markers. AoB Plants. 2014;6:1-15. DOI 10.1093/aobpla/plu034.; Lumaret R., Mir C., Michaud H., Raynal V. Phylogeograpical variation of chloroplast DNA in holm oak (Quercus ilex L.). Mol. Ecol. 2002;11:2327-2336.; Masayuki M. Population genetics of threatened wild plants in Japan. J. Pl. Res. 2003;116:169-174.; Mongolian Red Book. Ed. Ts. Shirevdamba. Ulaanbaatar: Admon Print Press, 2013.; Namzalov B.B. Gyul’denshtedtiya odnolistnaya – Gueldenstaedtia monophylla Fisch. [Gueldenstaedtia monophylla Fisch]. Biologicheskie osobennosti rasteniy Sibiri, nuzhdayushchikhsya v okhrane [Biological features of Siberian plants in need of protection]. Novosibirsk, 1986. (in Russian); Nei M. Genetic distance between populations. Amer. Naturalist. 1972; 106(949):283-292. http://dx.doi.org/10.1086/282771Test.; Nei M., Li W.H. Mathematical models for studying genetic variation in terms of endonucleases. Proc. Natl. Acad. Sci. 1979;76:5269-5273.; Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004;13:1143-1155. http://dx.doi.org/10.1111/j.1365-294X.2004.02141.xTest.; Peakall R., Smouse P.E. GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537-2539.; Petit R.J., Aguinagalde I., de Beaulieu J.L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Muller-Starck G.M., Demesure-Musch B., Palme A., Martin J.P., Rendell S., Vendramin G.G. Glacial refugia: hotspots but not melting pots of genetic diversity. Science. 2003;300:1563-1565.; Primak R.B. Osnovy sokhraneniya bioraznoobraziya [Basics of Biodiversity Protection]. Moscow, 2002. (in Russian); Pyak A.I. Petrofity Russkogo Altaya [Petrophytes in Russian Altai]. Tomsk, 2003. (in Russian); Redkie i ischezayushchie rasteniya Sibiri [Rare and Endangered Plants of Siberia]. Novosibirsk, 1980. (in Russian); Rogenski C., Smith M., Esselman E. ISSR marker diversity of the threatened Astragalus crassicarpus var. trichocalyx in Illinois populations. Trans. Illinois St. Acad. Sci. 2009;102(3/4):149.; Rossetto M., Weaver P.K., Dixon K.W. Use of RAPD analysis in devising conservation strategies for the rare and endangered Grevillea scapigera (Proteaceae). Mol. Ecol. 1995;4:357-364.; Schonswetter P., Stehlik I., Holderegger R., Tribsch A. Molecular evidence for glacial refugia of mountain plants in the Europe Alps. Mol. Ecol. 2005;14:3547-3555.; Selyutina I.Yu., Cherkasova E.S., Karnaukhova N.A. The structure of coenopopulations of a rare species Gueldenstaedtia monophylla (Fabaceae) in the Central Altai. Botanical Journal. 2008;9(93):1414-1423. (in Russian); Vicente M.J., Segura F., Aguado M., Migliaro D., Franco J.J., MartinezSanchez J.J. Genetic diversity of Astragalus nitidiflorus, a critically endangered endemic of SE Spain, and implications for its conservation. Biochem. Syst. Ecol. 2011;39:175-182.; Willi Y., Van Buskirk J., Hoffmann A.A. Limits to the adaptive potential of small populations. Ann. Rev. Ecol. Evol. System. 2006;37:433-458.; Wu F.Q., Shen S.K., Zhang X.J., Wang Y.H., Sun W.B. Genetic diversity and population structure of an extremely endangered species: the world’s largest Rhododendron. AoB Plants. 2014. DOI 10.1093/aobpla/plu082.; Yeh F.C., Yang R., Boyle T. POPGENE: Microsoft Windows-based freeware for population genetic analysis. Release 1.31. 1999. available at http://wwwTest. ualberta.ca/~fyeh/index.htm.; Zhao X.F., Ma Y.P., Sun W.B., Wen X., Milne R. High genetic diversity and low differentiation of Michelia coriacea (Magnoliaceae), a critically endangered endemic in southeast Yunnan, China. Int. J. Mol. Sci. 2012;13:4396-4411.; Zhu H. A tropical seasonal rain forest at its altitudinal and latitudinal limits in southern Yunnan, SW China. Gard. Bull. Singap. 2004;56: 55-72.; Zhuravlev Y.N., Koren’ O.G., Muzarok T.I., Reunova G.D., Kozyrenko M.M., ArtyukovaE.V., Ilyushko M.V. Molecular markers for the preservation of rare plant species of the Far East. Fiziologiya rasteniy = Vegetable Рhysiol. 1999;46(6):953-964. (in Russian); Zvyagina N.S., Dorogina O.V. Genetic differentiation of the Altai–Sayan endemic Hedysarum theinum Krasnob. (Fabaceae) evaluated by inter-simple sequence repeat analysis genetics. Russ. J. Genetics (Moscow). 2013;49(10):1030-1035.; https://vavilov.elpub.ru/jour/article/view/965Test

  2. 2
    دورية أكاديمية

    المساهمون: Российский фонд фундаментальных исследований

    المصدر: Vavilov Journal of Genetics and Breeding; Том 21, № 2 (2017); 241-249 ; Вавиловский журнал генетики и селекции; Том 21, № 2 (2017); 241-249 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/940/905Test; Badaeva E.D., Amosova A.V., Samatadze T.E., Zoshchuk S.A., Shostak N.G., Chikida N.N., Zelenin A.V., Raupp W.J., Friebe B., Gill B.S. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 2004;246:45-76. DOI 10.1007/s00606–003–0072–4.; Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum. Plant Syst. Evol. 1994;192(1):117-145. DOI 10.1007/BF00985912.; Badaeva E.D., Friebe B., Gill B.S. Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome. 1996;39(6):1150-1158. DOI 10.1139/g96-145.; Badaeva E.D., Zoshchuk S.A., Paux E., Gay G., Zoshchuk N.V., Roger D., Zelenin A.V., Bernard M., Feuillet C. Fat element – a new marker for chromosome and genome analysis in the Triticeae.Chrom. Res. 2010;18(6):697-709. DOI 10.1007/s10577–010–9151–x.; Bedbrook R.J., Jones J., O’Dell M., Thompson R.J., Flavell R.B. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19:545-560.; Bushuk W., Zillman R.R. Wheat cultivar identification by gliadin electrophoregrams. 1. Apparatus, method, and nomenclature. Can. J. Plant Sci. 1978;58:505-515.; Dvořák J., Lassner M.W., Kota R.S., Chen K.C. The distribution of the ribosomal RNA genes in the Triticum speltoides and Elytrigia elongata genomes. Can. J. Genet. Cytol. 1984;62(5):628-632.; Dvořák J., Luo M.-C., Yang Z.-L. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics. 1998;148:423-434.; Dvořák J., Zhang H.-B., Kota R.S., Lassner M. Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome. 1989;32(6):1003-1016.; Friebe B., Gill B.S. Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. Methods in genome analysis in plants: their merits and piffals. Ed. P.P. Jauhar. N.Y.; L.; Tokyo: Boca Ration: CRC Press, 1996;39-60.; Kihara H. Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia. 1954;19(4):336-357.; McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Appels R., XiaX.C. Catalogue of Gene Symbols for Wheat: 2010. Available at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jspTest.; Metakovsky E.V. Gliadin allele identification in common wheat. 2. Catalogue of gliadin alleles in common wheat. J. Gen. Breed. 1991;45:325-344.; Metakovsky E.V., Novoselskaya A.Yu. Gliadin allele identification in common wheat I. Methodological aspects of the analysis of gliadin patterns by one dimensional polyacrylamide gel electrophoresis. J. Gen. Breed. 1991;45:317-324.; Morris E.R., Sears E.R. Tsitogenetika pshenitsy i rodstvennykh form [Cytogenetics of wheat and its relatives]. Jakubziner M.M. (Ed.). Pshenitsa i ee uluchshenie [Wheat and wheat improvement]. Moscow, Kolos Publ., 1970;84-90. (in Russian); Novosel’skaja A.Ju., Metakovskij E.V., Sozinov A.A. Investigation of polymorphisms of gliadin in some wheat varieties by the methods of one-dimensional and two-dimensional electrophoresis. Tsitologiya i genetika = Cytology and Genetics. 1983;17(5):45-50. (in Russian); Novosel’skaja-Dragovich A.Ju. Genetics and genomics of wheat: storage proteins, ecological plasticity and immunity. Genetika = Genetics (Moscow). 2015;51(5):568-583. DOI 10.7868/S0016675815050045. (in Russian); Novosel’skaja-Dragovich A.Ju., Krupnov V.A., Sajfulin R.A., Puhal’skij V.A. The dynamics of genetic diversity in Saratov cultivars of common wheat Triticum aestivum L. for gliadin coding loci over 80 years of scientific breeding. Genetika = Genetics (Moscow). 2003;39(10):1338-1346. (in Russian); Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Report. 1986; 4(2):102-109.; Salina E.A., Egorova E.M., Adonina I.G., Dobrovol’skaja O.B., Budashkina E.B., Leonova I.N. DNA markers for genotyping lines of common wheat (Triticum aestivum L.) with genetic material of Aegilops speltoides Tausch. and Triticum timopheevii Zhuk. Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2008;12(4):620-628. (in Russian); Salina E.A., Lim Y.K., Badaeva E.D., Shcherban A.B., Adonina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Yu., Zoshchuk S.A., Leitch A.R. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome. 2006;49:1023-1035. DOI 10.1139/G06–050.; Schneider A., Linc G., Molnar-Lang M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breeding. 2003;122:396-400. DOI 10.1046/j.1439–0523.2003.00891.x.; Schneider A., Molnar I., Molnar-Lang M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1-19. DOI 10.1007/s10681–007–9624–y.; Shepherd K.W. Chromosomal control of endosperm proteins in wheat and rye. Proc. 3rd Int. Wheat Genet. Symp. Eds. K.W. Finlay, K.W. Sherherd. Canberra. Austral. Acad. Sci., 1968;86-96.; Sozinov A.A., Poperelya F.A. Polymorphism of prolamins and breeding. Vestnik Selskokhozyaystvennoy Nauki = Herald of Agricultural Sciences. 1979;10:21-34. (in Russian); Van Slageren M.W. Wild Wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. et Spach) Eig (Poaceae). Wageningen: Wageningen Agricultural University and ICARDA, Aleppo, Syria, 1994.; Zhang P., Dundas I.S., McIntosh R.A., Xu S.S., Park R.F., Gill B.S., Friebe B. Wheat–Aegilops Introgressions. Alien Introgression in Wheat Cytogenetics, Molecular Biology, and Genomics. Ed. M. Molnar-Lang, C. Ceoloni, J. Dolžel. Springer International Publishing Switzerland, 2015;221-243. DOI 10.1007/978–3–319–23494–6.; https://vavilov.elpub.ru/jour/article/view/940Test

  3. 3
    دورية أكاديمية

    المساهمون: бюджетный проект VI.53.1.3

    المصدر: Vavilov Journal of Genetics and Breeding; Том 18, № 4/1 (2014); 807-811 ; Вавиловский журнал генетики и селекции; Том 18, № 4/1 (2014); 807-811 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/308/310Test; Будашкина Е.Б., Калинина Н.П. Создание интрогрессивных линий гексаплоидной пшеницы, устойчивых к грибным инфекциям: Патент РФ 1998. № 2138155.; Обухова Л.В., Будашкина Е.Б., Ермакова М.Ф., Калинина Н.П., Шумный В.К. Качество зерна и муки у интрогрессивных линий яровой мягкой пшеницы с генами устойчивости к листовой ржавчине от; Triticum timopheevii Zhuk. // С.-х. биология. 2008. № 5. С. 38–42.; Обухова Л.В., Будашкина Е.Б., Шумный В.К. Исследование запасных белков у интрогрессивных линий мягкой пшеницы (Triticum aestivum L. × Triticum timopheevii Zhuk.) // Генетика. 2009. Т. 45. № 3. С. 360–368.; Обухова Л.В., Майстренко О.И., Генералова Г.В. и др. Состав высокомолекулярных субъединиц глютена у замещенных линий мягкой пшеницы, созданных с участием сортов с контрастными хлебопекарными свойствами // Генетика. 1997. Т. 33. № 8. С. 1179–1184.; Созинов А.А. Полиморфизм белков и его значение в генетике и селекции. М.: Наука, 1985. 272 с.; Чеботарь С.В., Благодарова Е.М., Куракина Е.А. и др. Генетический полиморфизм локусов, определяющих хлебопекарное качество украинских сортов пшеницы // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 1. С. 87–98.; Branlard G., Dardevet M. Diversity of grain proteins and bread wheat quality. II. Correlation between high molecular weight subunits of glutenin and fl our quality characteristics // J. Cereal Sci. 1985. V. 3. P. 345–354.; Gupta R.B., MacRitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3, and Gli-1, of common wheat. II. Biochemical basis of the allelic effects on dough properties // J. Cereal Sci. 1994. V. 19. P. 19–29.; Gupta R.B., Paul J.G., Cornish G.B. et al. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats. I. Its additive and interaction effects on dough properties // J. Cereal Sci. 1994b. V. 19. P. 9–17.; Gupta R.B., Singh N.K., Shepherd K.W. The cumulative effects of allelic variation in LMV and HMW glutenin subunits on physical dough properties in the progeny of two bread wheats // Theor. Appl. Genet. 1989b. V. 77. P. 57–64.; Lukow O.M., Payne P.I., Tkachuk R. The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread-making quality // J. Sci. Food Agric. 1989. V. 46. P. 451–460.; Luo C., Griffi n W.B., Branlard G., McNeil D.L. Comparison of low- and high molecular-weight wheat glutenin allele effects on fl our quality // Theor. Appl. Genet. 2001. V. 102. P. 1088–1098.; MacRitchie F. Baking quality of wheat fl ours // Adv. Food Res. 1984. V. 29. P. 201–277.; Metakovsky E.V., Wrigley C.W., Bekes F., Gupta R.B. Gluten рolypeptides as useful genetic markers of dough quality in Australian wheats // Austr. J. Agric. Res. 1990. V. 41. P. 289–306.; Morgunov A.I., Rogers W.J., Sayers E.J., Metakovsky E.V. The high-molecular-weight glutenin subunit composition of Soviet wheat varieties // Euphytica. 1990. V. 51. P. 41–52.; Obukhova L.V., Maystrenko O.I., Generalova G.V. et al. Role of prolamins in BMQ of wheat substitution lines raised from cultivars contrasting in this quality // Cereal Res. Commun. 2001. V. 29. No. 1/2. P. 189–196.; Payne P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality // Ann. Rev. Plant. Physiol. 1987. V. 38. P. 141–153.; Payne P.I., Corfi eld K.G., Blackman J.A. Identification of a high-molecular weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree // Theor. Appl. Genet. 1979. V. 55. P. 153–159.; Payne P.I., Holt L.M., Jackson E.A., Law C.N. Wheat storage proteins: their genetics and their potential for manipulation by plant breeding // Philos. Trans. R. Soc. Lond. Ser. B. 1984. V. 304. P. 359–371.; Payne P.I., Nightingale M.A., Krattiger A.F., Holt L.M. The relationship between HMW glutenin subunits composition and the bread-making quality of British-grown wheat varieties // J. Sci. Food Agric. 1987. V. 40. P. 51–65.; Wheat: Science and Trade / Ed. B. Carve. Wiley-Blakwell, 2009. 569 p.; Wrigley C.W. Giant proteins with fl our power // Nature. 1996. V. 381. P. 738–739.; https://vavilov.elpub.ru/jour/article/view/308Test