يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Forrajes"', وقت الاستعلام: 1.31s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: sour topics; Vol. 27 No. 2 (2022): Continuous publication - Volume 27(2) of 2022; 378-384 ; Temas Agrarios; Vol. 27 Núm. 2 (2022): Publicación continua - Volumen 27(2) de 2022; 378-384 ; 2389-9182 ; 10.21897/rta.v27i2

    وصف الملف: application/pdf

    العلاقة: https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3068/5192Test; https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3068/5193Test; Ávila, C. L. da S., Pinto, J. C., Tavares, V. B. y Santos, Í. P. A. dos. 2006. Avaliação dos conteúdos de carboidratos solúveis do capim-tanzânia ensilado com aditivos. Revista Brasileira De Zootecnia 35(3): 648–654. https://doi.org/10.1590/S1516-35982006000300004Test; Amaral, R. C. do., Bernardes, T. F., Siqueira, G. R., e Reis, R. A. 2008. Estabilidade aeróbia de silagens do capim-marandu submetidas a diferentes intensidades de compactação na ensilagem. Revista Brasileira De Zootecnia 37(6): 977–983. https://doi.org/10.1590/S1516-35982008000600004Test; Bolson, D. C., Pereira, D. H., Pina, D. S., Xavier, I. M., Barbosa, P. L., Carneiro e Pedreira, B. and Mombach, M. A. 2020. Corn silage rehydrated with crude glycerin in lambs’ diets. Tropical Animal Health and Production 52: 3307–3314. https://doi.org/10.1007/s11250-020-02362-yTest; Bolson, D., Pereira, D., Pina, D., Pedreira, B., Mombach, M. and Xavier, I. 2017. Fermentative and bromatological value of Piatã palisadegrass ensiled with different additives. Archivos de Zootecnia 66(256),515-521 https://www.redalyc.org/articulo.oa?id=49553571007Test; Castro, F. G. F., Nussio, L. G., Haddad, C. M., Campos, F. P. de., Coelho, R. M., Mari, L. J. e Toledo, P. A. 2006. Características de fermentação e composição químico-bromatológica de silagens de capim-tifton 85 confeccionadas com cinco teores de matéria seca. Revista Brasileira de Zootecnia 35: 7-20. https://doi.org/10.1590/S1516-35982006000100002Test; Cunha, S. S., Orrico Junior, M. A. P., Reis, R. A., Orrico, A. C. A., Schwingel, A. W., Reis, S. D. S. and Silva M. S. J. 2019. Use of crude glycerine and microbial inoculants to improve the fermentation process of Tifton 85 haylages. Tropical Animal Health and Production 52: 871–879. https://doi.org/10.1007/s11250-019-02082-yTest; Daniel, J. L. P., Bernardes, T. F., Jobim, C. C., Schmidt, P. and Nussio, L. G. 2019. Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science 74(2):188–200. https://doi.org/10.1111/gfs.12417Test; Dias, A. M., Ítavo, L. C. V., Ítavo, C. C. B. F., Blan, L. R., Gomes, E. N. O., Soares, C. M., Leal, E. S., Nogueira, E. e Coelho, E. M. 2014. Ureia e glicerina bruta como aditivos na ensilagem de cana-de-açúcar. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 66 (6): 1874-1882. https://doi.org/10.1590/1678-7349Test; Ferreira, A. C. H., Neiva, J. N. M., Rodriguez N. M., Lopes, F. C. F. e Lôbo, R. N. B. 2010. Consumo e digestibilidade de silagens de capim-elefante com diferentes níveis de subproduto da agroindústria da acerola. Revista Ciência Agronômica 41(4): 693-701. https://doi.org/10.1590/S1806-66902010000400025Test; Gutierrez-Gomez, C., Vera, N., Allende, R., Williams, P., Astudillo, R. and Ávila-Stagno, J. 2020. Linseed and glycerol in forage diets effect methane production and rumen fermentation parameters in a Rusitec semi-continuos system. Animal Production Science 60(7): 923-929. https://doi.org/10.1071/AN18710Test; Jobim, C. C., Nussio, L. G., Reis, R. A. e Schmidt, P. 2007. Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia 36:101-119. https://doi.org/10.1590/S1516-35982007001000013Test; Kung Junior, L., Grieve, D. B., Thomas, J. W. and Huber, J. T. 1984. Added ammonia or microbial inocula for fermentation and nitrogenous compounds of alfalfa ensiled at various percents of dry matter. Journal of Dairy Science 67 (2): 299-306. https://doi.org/10.3168/jds.S0022-0302Test(84)81302-8; Krehbiel, C. R. 2008. Ruminal and physiological metabolism of glycerin. Journal of Animal Science 86: 392-399.; Machado, S. M., Sales, E. C. J., Rigueira, J. P. S., Pires, D. A. S., Silva, A. F. e Monção, F. P. 2019. Glicerina bruta melhora o valor nutricional de silagem de milheto colhido em duas idades. Revista Agrarian 12(44): 204-213. https://doi.org/10.30612/agrarian.v12i44.8893Test; R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.orgTest/; Rigueira, J. P. S., Monção, F. P., Sales, E. C. J., Reis, S. T., Brant, L. M. S., Chamone, J. M. A., Rocha Júnior, V. R. and Pires, D. A. A. 2018. Fermentative profile and nutritional value of elephant grass silage with different levels of crude glycerin. Semina: Ciências Agrárias 39(2): 833-844. https://doi.org/10.5433/1679-0359.2018v39n2p833Test; Rodrigues, A. C. C. 2021. Policy, regulation, development, and future of biodiesel industry in Brazil. Cleaner Engineering and Technology 4:100197. https://doi.org/10.1016/j.clet.2021.100197Test; Santos, E. M. y Zanine, A. de M. 2007. SILAGEM DE GRAMÍNEAS TROPICAIS. Colloquium Agrariae 2(1): 32–45. https://journal.unoeste.br/index.php/ca/article/view/107Test; Schwingel, A. W., Fernandes, T., Orrico Junior, M. A. P., Orrico, A. C. A., Junior, J. L., Reis, R. A. and Souza, R. O. 2020. The quality of crude glycerine influences the fermentation and nutritive value of Piatã grass silage. Revista Brasileira de Zootecnia 49: e20200114. https://doi.org/10.37496/rbz4920200114Test; Silva, M. C. A., Costa, N. M., Rigueira, J. P. S., Jesus, D. L. S., Silva, N. B. S., Silva Filho, W. S., Silva, J. T., Araújo, J. J. S., Rocha Júnior, V. R., Alves, D. D., Chamone, J. M. A. and Monção, F. P. 2019. The effect of graded levels of crude glycerin in brs capiaçu grass silage: fermentation profile and bromatological composition. Iranian Journal of Applied Animal Science 9(4): 597-602. https://dorl.net/dor/20.1001.1.2251628.2019.9.4.2.6Test; Syahniar, T. M., Ridla, M., Jayanegara, A. and Samsudin, A. A. 2018. Effects of glycerol and chestnut tannin addition in cassava leaves (Manihot esculenta Crantz) on silage quality and in vitro rumen fermentation profiles. Journal of Applied Animal Research 46(1): 1207–1213. https://doi.org/10.1080/09712119.2018.1485568Test; https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3068Test

  2. 2
    دورية أكاديمية

    المصدر: Journal MVZ Cordoba; Vol. 27 No. 3 (2022): Vol. 27 Núm. 3 (2022): Revista MVZ Córdoba Volumen 27(3) Septiembre-Diciembre 2022; e2654 ; Revista MVZ Córdoba; Vol. 27 Núm. 3 (2022): Vol. 27 Núm. 3 (2022): Revista MVZ Córdoba Volumen 27(3) Septiembre-Diciembre 2022; e2654 ; 1909-0544 ; 0122-0268 ; 10.21897/rmvz.v27.n3.2022

    وصف الملف: application/pdf; audio/mpeg

    العلاقة: https://revistamvz.unicordoba.edu.co/article/view/2654/4915Test; https://revistamvz.unicordoba.edu.co/article/view/2654/4916Test; https://revistamvz.unicordoba.edu.co/article/view/2654/4918Test; https://revistamvz.unicordoba.edu.co/article/view/2654/4919Test; https://revistamvz.unicordoba.edu.co/article/view/2654/4924Test; https://revistamvz.unicordoba.edu.co/article/view/2654/4917Test; 1. Torregrosa L, Reza S, Suárez E, Espinosa M, Cuadrado H, Pastrana I, Mejía S, et al. Producción de carne en pasturas irrigadas y fertilizadas de Brachiaria híbrido cv. Mulato II en el valle del Sinú. Corpoica Cienc. Tecnol. Agropecu. 2015; 16(1):31-139. http://dx.doi.org/10.21930/rcta.vol16_num1_art:391Test; 2. Tapia-Coronado JJ, Atencio-Solano LM, Mejía-Kerguelen SL, Paternina-Paternina Y, Cadena-Torres J. Evaluación del potencial productivo de nuevas gramíneas forrajeras para las sabanas secas del caribe en Colombia. Agron Costarricense. 2019; 43(2):45-60. http://dx.doi.org/10.15517/rac.v43i2.37943Test.; 3. Bernardes TF, Daniel JLP, Adesogan AT, Tremblay GF, Bélanger G, Cai Y. Unique challenges of silages made in hot and cold regions. J Dairy Sci. 2018; 101(5):401-419. https://doi.org/10.3168/jds.2017-13703Test; 4. Wichai S, Soytong K. Lactic acid bacteria and enzyme production in silage of guinea grass (Panicum maximum). Bulg. J. Agric. Sci. 2017; 23 (1):86–91. https://www.agrojournal.org/23/01-12.htmlTest; 5. Dongxia L, Kuikui N, Yingchao Z, Yanli L, Fuyu Y. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australasian J Anim Sci. 2019; 32(5):665-674. https://doi.org/10.5713/ajas.18.0085Test.; 6. Kung L. Silage fermentation and additives. Arch Latinoam Prod Anim. 2018; 26(3-4):61-66. https://ojs.alpa.uy/index.php/ojs_files/article/view/2677/1219Test; 7. Singh N, Kumar B, Singh P, Kumar A, Singh P. Qualitative assessment of silage prepared at farmer’s field in Tarn Taran District of Punjab. Indian J Anim Nut. 2017; 34(3):357-360. https://doi.org/360Test. 10.5958/2231-6744.2017.00058.5; 8. Kaewpila C, Gunun P, Kesorn P, Subepang S, Thip-Uten S, Cai Y, Pholsen S, Cherdthong A, Khota W. Improving ensiling characteristics by adding lactic acid bacteria modifes in vitro digestibility and methane production of forage‑sorghum mixture silage. Sci Rep. 2021; 11(1968):9. https://doi.org/10.1038/s41598-021-81505-zTest; 9. Dong M, Li Q, Xu F, Wang S, Chen J, Li W. Effects of microbial inoculants on the fermentation characteristics and microbial communities of sweet sorghum bagasse silage. Sci Rep. 2020; 10(837):9. https://doi.org/10.1038/s41598-020-57628-0Test; 11. Andrade SJT, Melotti L. Efeito de alguns tratamentos sobre a qualidade da silagem de capim-elefante cultivar Napier (Pennisetum purpureum, Schum). Braz J Vet Res Anim Sci. 2018; 41(6):409-415. https://doi.org/10.1590/S1413-95962004000600009Test; 12. Yitbarek M, Tamir B. Silage Additives: Review. Open J Appl Sci. 2014; 4(5):258-274. https://doi.org/10.4236/ojapps.2014.45026Test; 13. Leite de Oliveira FC, Sánchez JMD, Vendramin JMB, Lima CG, Luz PHC, Rocha CO, Pereira LET, Herling. R. Diurnal vertical and seasonal changes in non-structural carbohydrates in Marandu palisade grass. J Agric Sci. 2018; 156(3):457-464. https://doi.org/10.1017/S0021859618000394Test; 14. Blajman J, Páez R, Vinderola C, Lingua M, Signorini M. A meta-analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. J Appl Microbiol. 2018; 125:1655-1669. https://doi.org/10.1111/jam.14084Test; 15. Ojeda F, Cáceres O, Esperance M. Conservación de forrajes. Editorial Pueblo y Educación: La Habana, Cuba; 1991.; 16. AOAC. Official methods of analysis. 18th Edition. AOAC International: Washington DC; 2005.; 17. Geron VLJ, Cabral Da Silva L, Trautmann-Machado RJ, Zeoula LM, Oliveira BE, Garcia J, Gonçalves MR, Aguiar SRP. Avaliação do teor de fibra em detergente neutro e ácido por meio de diferentes procedimentos aplicados às plantas forrageiras. Semina: Ciências Agrárias. 2014; 35(3):1533-1542. https://doi.org/10.5433/1679-0359.2014v35n3p1533Test; 18. Arzate-Vásquez GL, Castrejón-Pineda FA, Rosiles-Martínez R, Carrillo-Pita S, Angeles-Campos S, Vargas-Bello-Pérez E. Effects of genus and growth stage on the chemical and mineral composition of tropical grasses used to feed dairy cows. Cien Inv Agr. 2016; 43(3):476-485. https://doi.org/10.4067/S0718-16202016000300013Test; 19. Cappelle ER, Filho SCV, Silva JFC, Cecon PR. Estimativas do valor energético a partir de características químicas e bromatológicas dos alimentos. Rev Bras Zootec. 2001; 30(6):1837-1856. http://dx.doi.org/10.1590/S1516-35982001000700022Test; 20. Di Rienzo J, Casanoves F, Balzarini M, González M, Tablada M, Robledo C. InfoStat, Software estadístico, Facultad de Ciencias Agrarias, Universidad Nacional de Córdoba; 2020.; 21. La Guardia R, Dereck M. Seasonal and diurnal relationship of forage nutritive value and mass in a tall fescue pasture under continuous stocking. Grassl Sic. 2019; 65(3):162-170. https://doi.org/10.1111/grs.12231Test; 22. Urbano-Estrada MF, Cardona-Iglesias JL, Castro-Rincón E. Evaluación de sólidos solubles en recursos forrajeros del trópico alto en el departamento de Nariño. CES Med Vet Zootec. 2020; 15(2):8-22. http://dx.doi.org/10.21615/cesmvz.15.2.1Test; 23. Suárez-Paternina E, Reza-García S, Cuadrado-Capella H, Pastrana-Vargas I, Espinosa-Carvajal M, Mejía-Kerguelén S. Variación en la concentración de sólidos solubles durante el día, en tres pasturas en época seca en el valle medio del río Sinú. Cienc Tec Agrop. 2015; 16(2):181-188. https://doi.org/10.21930/rcta.vol16-num2Test; 24. Vasconcelos WA, Santos EM, Zanine AM, Pinto TF, Lima WC, Edvan RL, et al. Valor nutritivo de silagens de capim-mombaça (Panicum maximum Jacq.) colhido em função de idades de rebrotação. Rev Bras Saúde Prod Anim. 2009; 10(4):874-884. https://www.bvs-vet.org.br/vetindex/periodicos/revista-brasileira-de-saude-e-producao-animal/10Test-(2009)-4/valor-nutritivo-de-silagens-de-capim-mombaca-panicum-maximum-jacq-colh/; 25. Bumbieris Junior VH, Horst EH, Guimarães VAP, Massaro Junior FL, Moraes GJ, Meza DAR, Galbeiro S. Effect of microbial inoculants on the chemical composition and aerobic stability of Tanzania guinea grass silages. S Afr J Anim Sci 2021; 51(1):81-87. https://doi.org/10.4314/sajas.v51i1.9Test; 26. Borreani G, Tabacco E, Schmidt RJ, Holmes BJ, Muck RE. Factors affecting dry matter and quality losses in silages. J Dairy Sci. 2018; 101(5):3952-3979. https://doi.org/10.3168/jds.2017-13837Test; 27. Ferraretto LF, Shaver RD, Luck BD. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J Dairy Sci. 2018; 101(5):3937-3951. https://doi.org/10.3168/jds.2017-13728Test; 28. Zardin PB, Velho JP, Jobin CC, Alessio DRM, Haygert-Velho IMP, Conceição GM, et al. Chemical composition of corn silage produced by scientific studies in Brazil – A meta-analysis. Semina: Ciênc Agrár. 2017; 38(1):503-512. https://doi.org/10.5433/1679-0359.2017v38n1p503Test; 29. Melo MJA, Backes AA, Fagundes JL, Melo MT, Silva GP, Freire APL. Características fermentativas e composição química da silagem de capim Tanzânia com aditivos. Bol Ind Anim. 2016; 73(3):189-197. https://doi.org/10.17523/bia.v73n3p189Test; 30. Gandra JR, De Oliveira ER, Takiya CS, Del Valle TA, Araki HMC, Silveira K, et al. Microbial inoculant and an extract of Trichoderma longibrachiatum with xylanase activity effect on chemical composition, fermentative profile and aerobic stability of guinea grass (Pancium maximum Jacq.) silage. J Anim Feed Sci. 2017; 26:339–347. https://doi.org/10.22358/jafs/80776/2017Test; 31. Kung JR L, Shaver RD, Grant RJ, Schmidt RJ. Interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci. 2018; 101(5):4020-4033. https://doi.org/10.3168/jds.2017-13909Test; 32. Muck R, Nadeau EMG, McCallister TA, Contreras-Govea FE, Santos Mc, Kung Jr L. Recent advances and future uses of silage additives. J Dairy Sci. 2018; 101(5):3980-4000. https://doi.org/10.3168/jds.2017-13839Test; 33. Patiño RM, Gómez R, Navarro OA. Calidad nutricional de Mombasa y Tanzania (Megathyrsus maximus, Jacq.) manejados a diferentes frecuencias y alturas de corte en Sucre, Colombia. CES Med Vet Zootec. 2018; 13 (1):17-30. http://dx.doi.org/10.21615/cesmvz.13.1.2Test; 34. Gregorini P, Soder KJ, Sanderson MA. A snapshot in time of fatty acids composition of grass herbage as affected by time of day. Prof Anim Sci. 2008; 24(6):675-680. https://doi.org/10.15232/S1080-7446Test(15)30921-9; 35. Amador L, Bochini C. Fenología productiva y nutricional de maíz para la producción de forraje. Rev Agron Mesoam. 2000; 11(1):171-177.3. URL: http://www.mag.go.cr/rev_meso/v11n01_171.pdfTest; 36. Krüger AM, Lima PMT, Filho ALA, Moro JG, Carvalho IG, Abdalla AL, Jobim CC. Dry matter concentration and corn silage density: Effects on forage quality. Trop Grassl. 2020; 8(1):20-27. https://doi.org/10.17138/tgftTest(8)20-27; 37. Oliveira IL, Lima LM, Casagrande DR, Lara MAS, Bernardes TF. Nutritive value of corn silage from intensive dairy farms in Brazil. Rev Bras Zootec. 2017; 46(6):494-501. http://dx.doi.org/10.1590/s1806-92902017000600004Test; 38. Kung L, Shaver R. Interpretation and use of silage fermentation analysis reports. Focus on Forages. 2016; 3(13):1-5. https://fyi.extension.wisc.edu/forage/files/2016/10/Fermentation2.pdfTest; https://revistamvz.unicordoba.edu.co/article/view/2654Test

  3. 3
    دورية أكاديمية

    المصدر: Journal MVZ Cordoba; Vol. 27 No. 3 (2022): Vol. 27 Núm. 3 (2022): Revista MVZ Córdoba Volumen 27(3) Septiembre-Diciembre 2022; e2549 ; Revista MVZ Córdoba; Vol. 27 Núm. 3 (2022): Vol. 27 Núm. 3 (2022): Revista MVZ Córdoba Volumen 27(3) Septiembre-Diciembre 2022; e2549 ; 1909-0544 ; 0122-0268 ; 10.21897/rmvz.v27.n3.2022

    وصف الملف: application/pdf; audio/mpeg

    العلاقة: https://revistamvz.unicordoba.edu.co/article/view/2549/4877Test; https://revistamvz.unicordoba.edu.co/article/view/2549/4878Test; https://revistamvz.unicordoba.edu.co/article/view/2549/4879Test; https://revistamvz.unicordoba.edu.co/article/view/2549/4880Test; https://revistamvz.unicordoba.edu.co/article/view/2549/4876Test; 1. Luscher A, Mueller-Harvey I, Soussana JF, Rees RM, Peyraud JL. Potential of legume-based grassland–livestock systems in Europe: a review. Grass For Sci. 2014; 69(2):206–228. https://doi.org/10.1111/gfs.12124Test; 2. Gondim Filho AGC, Moreira GR, Gomes-Silva F, Cunha Filho M, Gomes DA, Ferreira AL, et al. Avaliação nutricional de genótipos de amendoim forrageiro (Arachis pintoi) por técnicas multivariadas. Res Soc Dev. 2020; 9(8):1-19. http://dx.doi.org/10.33448/rsd-v9i8.6039Test.; 3. Rigueira JPS, Pereira OG, Ribeiro KG, Valadares Filho SC, Cezário AS, Silva VP, et al. Silage of Marandu grass with levels of stylo legume treated or not with microbial inoculant. J Agric Sci. 2017; 9(9):36-42. https://doi.org/10.5539/jas.v9n9p36Test; 4. Silveira HVL, Braz TGS, Rigueira JPS, Santos MV, Gusmão JO, Alves MA, et al. Macauba palm cake as additive in elephant grass silage. Acta Sci Anim Sci. 2020; 42(1):1-10. https://doi.org/10.4025/actascianimsci.v42i1.47171Test; 5. Zanine AM, Sene OA, Ferreira DJ, Parente HN, Parente M.O.M., Pinho, RMA, et al. Fermentative profile, losses and chemical composition of silage soybean genotypes amended with sugarcane levels. Sci Rep. 2020; 10(e21064):1-10, https://doi.org/10.1038/s41598-020-78217-1Test; 6. Pacheco WF, Carneiro MSS, Pinto AP, Edvan RL, Arruda PCL, Do Carmo ABR. Fermentation losses of elephant grass (Pennisetum purpureum Schum.) silage with increasing levels of Gliricidia sepium hay. Acta Vet Bras. 2014; 8(3):155-162. https://doi.org/10.21708/avb.2014.8.3.3289Test; 7. Darabighane B, Aghjehgheshlagh FM, Mahdavi A, Navidshad B, Bernard JK. Replacing alfalfa hay with dry corn gluten feed alters eating behavior, nutrient digestibility, and performance of lactating dairy cows. Italian J Anim Sci. 2020; 19(1):1266–1276 https://doi.org/10.1080/1828051X.2020.1830722Test; 8. Amorim DS, Edvan RL, Nascimento RR, Bezerra LR, Araújo MJ, Silva AL, et al. Fermentation profile and nutritional value of sesame silage compared to usual silages. Italian J Anim Sci. 2020; 19(1):230-239. https://doi.org/10.1080/1828051X.2020.1724523Test; 9. Williams AG. The permeability and porosity of grass silage as affected by dry matter. J Agric Eng Res. 1994; 59(2):133-140. https://doi.org/10.1006/jaer.1994.1070Test; 11. Jobim CC, Nussio LG, Reis RA, Schmidt P. Avanços metodológicos na avaliação da qualidade da forragem conservada. Rev Bras Zootec. 2007; 36(suppl.):101-119. https://doi.org/10.1590/S1516-35982007001000013Test; 12. Dong Z, Yuan X, Wen A, Desta ST, Shao T. Effects of calcium propionate on the fermentation quality and aerobic stability of alfalfa silage. Asian-Austral J Anim Sci. 2017; 30(9):1278-1284. https://doi.org/10.5713/ajas.16.0956Test; 13. Costa DM, Carvalho BF, Bernardes TF, Schwan RF, Ávila CLS. New epiphytic strains of lactic acid bacteria improve the conservation of corn silage harvested at late maturity. Anim Feed Sci Technol. 2021; 274: e114852. https://doi.org/10.1016/j.anifeedsci.2021.114852Test; 14. Araújo CA, Santos APM, Monteiro CCF, Lima DO, Torres AM, Santos CVS, et al. Efeito do tempo de ensilagem sobre a composição química, perfil fermentativo e estabilidade aeróbia de silagens de milho (Zea mays). Diversitas J. 2020; 5(1):547-561. https://doi.org/10.17648/diversitas-journal-v5i1-1035Test; 15. Williams SD, Shinners KJ. Farm-scale anaerobic storage and aerobic stability of high dry matter sorghum as a biomass feedstock. Biom Bioen. 2012; 46(1):309-316. https://doi.org/10.1016/j.biombioe.2012.08.010Test; 16. AOAC. Official Methods of Analysis Association of Official Analytical Chemists. Version 15 edition. Arlington, VA; 2019.; 17. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302Test(91)78551-2; 18. Sniffen CJ, O’Connor JD, Van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci. 1992; 70(11):3562–3577. https://doi.org/10.2527/1992.70113562xTest; 19. Hall MB. Challenges with non-fiber carbohydrate methods. J Anim Sci. 2003; 81(12):3226-6. https://doi.org/10.2527/2003.81123226xTest; 20. Horst EH, Neumann M, Mareze J, Leão GFM, Bumbieris Júnior VH, Mendes MC. Nutritional composition of pre-dried silage of different winter cereals. Acta Scient. Anim Sci. 2018; 40(1):e42500. https://doi.org/10.4025/actascianimsci.v40i1.42500Test; 21. Wilkinson JM, Davies DR. The aerobic stability of silage: key findings and recent developments. Grass For Sci. 2012; 68(1):1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.xTest; 22. Borreani G, Tabacco E, Schmidt RJ, Holmes BJ, Muck RE. Silage review: Factors affecting dry matter and quality losses in silages. J Dairy Sci. 2018; 101(5):3952-3979. https://doi.org/10.3168/jds.2017-13837Test; 23. Wang M, Franco M, Cai Y, Yu Z. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Anim Feed Sci Technol. 2020; 270(1):e114702. https://doi.org/10.1016/j.anifeedsci.2020.114702Test.; 24. Pereira DS, Lana RP, Carmo DL, Costa YKS. Chemical composition and fermentative losses of mixed sugarcane and pigeon pea silage. Acta Scient. Anim Sci. 2019; 41(1):e43709. https://doi.org/10.4025/actascianimsci.v41i1.43709Test; 25. Gomes FM, Ribeiro KG, Souza IA, Silva JL, Agarussi MCN, Silva VP, et al. Chemical composition, fermentation profile, microbial population and dry matter recovery of silages from mixtures of palisade grass and forage peanut. Trop Grassl-For Trop. 2021; 9(1):34–42. https://doi.org/10.17138/TGFTTest(9)34-42; 26. Vu VH, Li X, Wang M, Liu R, Zhang G, Liu W, et al. Dynamics of fungal community during silage fermentation of elephant grass (Pennisetum purpureum) produced in northern Vietnam. Asian-Australas J Anim Sci. 2019; 32(7):e996. https://doi.org/10.5713/ajas.18.0708Test.; 27. Liu B, Yang Z, Huan H, Gu H, Xu N, Ding C. Impact of molasses and microbial inoculants on fermentation quality, aerobic stability, and bacterial and fungal microbiomes of barley silage. Sci. Rep. 2020; 10(1):1-10. https://doi.org/10.1038/s41598-020-62290-7Test; 28. Freitas CAS, Anjos AJ, Alves WS, Macêdo AJS, Coutinho DN, Barcelos MP, et al. Realocação de silagens em propriedades rurais: uma abordagem sobre o estado da arte. Res Soc Dev. 2020; 9(12):1-15. http://dx.doi.org/10.33448/rsd-v9i12.10860Test; 29. Azevedo MMR, Guimaraes AKV, Cabral ÍS, Barbosa CR, Machado LS, Pantoja JC, et al. Características de silagens de capim-elefante (Pennisetum purpureum Schum.) com níveis de inclusão de moringa (Moringa oleífera Lam.). Braz J Dev. 2020; 6(9):71418-71433. https://doi.org/10.34117/bjdv6n9-549Test.; 30. Zhao GQ, Wei SN, Liu C, Kim HJ, Kim JG. Effect of harvest dates on β-carotene content and forage quality of rye (Secale cereale L.) silage and hay. J Anim Sci Technol. 2021; 63(2):354-366 https://doi.org/10.5187/jast.2021.e28Test; 31. Dong Z, Wang S, Zhao J, Li J, Shao T. Effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry (Morus alba L.) leaves silage. Asian-Australas J Anim Sci. 2019; 33(8): e1292. https://doi.org/10.5713/ajas.19.0420Test; 32. Nascimento G, Zenatti TF, Cantoia Júnior RC, Del Valle TA, Campana M, Fontanetti A, et al. Ensilagem de milho de diferentes genótipos produzidos com adubação orgânica. Agr. 2019; 12(44):196-203. https://doi.org/10.30612/agrarian.v12i44.9377Test; 33. Amaral RC, Carvalho BF, Costa DM, Morenz MJF, Schwan RF, Ávila CLS. Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS Capiaçu. Anim Feed Sci Technol. 2020; 264(1):e114472. https://doi.org/10.1016/j.anifeedsci.2020.114472Test; 34. Ziech MF, Olivo CJ, Ziech ARD, Martin TN. Morphogenesis in pastures of Coastcross-1 and Tifton 85 mixed with forage peanut, submitted to cutting management. Semina: Ci. Agr. 2016; 37(3):1461-1474. https://doi.org/10.5433/1679-0359.2016v37n3p1461Test; 35. Ferrero F, Piano S, Tabacco E, Borreani G. Effects of the conservation period and the inoculum of Lactobacillus hilgardii on the fermentative profile and aerobic stability of whole corn and sorghum silages. J Sci Food Agric. 2018; 99(5):2530-2540. https://doi.org/10.1002/jsfa.9463Test; 36. Carvalho WG, Costa KAP, Epifanio PS, Perim RC, Teixeira DAA, Medeiros LT. Silage quality of corn and sorghum added with forage peanuts. Rev Caat. 2016; 29(2):465–472. https://doi.org/10.1590/1983-21252016v29n224rcTest; 37. Nurhayu A, Saenab A, Ella A, Ishak ABL, Qomariyah N The effects of elephant grass silage combined with Indigofera sp. On the performance of bali cattle. J Anim Health Prod. 2021; 9(3):229-235. http://dx.doi.org/10.17582/journal.jahp/2021/9.3.229.235Test; 38. Chen L, Dong Z, Li J, Shao T. Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J Sci Food Agric. 2019; 99(5):2140-2151. http://dx.doi.org/10.1002/jsfa.9406Test; 39. Özyurt G, Gökdoğan S, Şimşek A, Yuvka I, Ergüven M, Boga EK. Fatty acid composition and biogenic amines in acidified and fermented fish silage: a comparison study. Arch Anim Nut. 2016; 70(1):72-86. https://doi.org/10.1080/1745039X.2015.1117696Test; 40. Lima LS, Oliveira RL, Borja MS, Bagaldo AR, Faria EFS, Silva TM, et al. Peanut cake concentrations in massai grass silage. Rev MVZ. 2013; 18(1):3265-3272.; 41. Machado E, Pintro PTM, Ítavo LCV, Agustinho BC, Daniel JLP, Santos NW, et al. Reduction in lignin content and increase in the antioxidant capacity of corn and sugarcane silages treated with an enzymatic complex produced by white rot fungus. Plos ONE. 2020; 15(2): e0229141. https://doi.org/10.1371/journal.pone.0229141Test; 42. Irawan A, Sofyan A, Ridwan R, Hassim HA, Respati AN, Wardani WW, et al. Effects of different lactic acid bacteria groups and fibrolytic enzymes as additives on silage quality: A meta-analysis. Bioresour. Technol Rep. 2021; 14(1):e100654. https://doi.org/10.1016/j.biteb.2021.100654Test; 43. Serra-Ferreira CM, Farias-Souza AG, Almeida-Mendonça RC, Simões-Souza M, Lopes-Filho WRL, Faturi C, et al. Murumuru (Astrocaryum murumuru) meal as an additive to elephant grass silage. Rev Colomb Cienc Pecu. 2020; 33(4):264-272. https://doi.org/10.17533/udea.rccp.v33n4a06Test; 44. Silva MDA, Carneiro MSS, Pinto AP, Pompeu RCFF, Silva DS, Coutinho MJF, et al. Avaliação da composição químico-bromatológica das silagens de forrageiras lenhosas do semiárido brasileiro. Semina: Ci Agr. 2015; 36(1):571-578. https://doi.org/10.5433/1679-0359.2015v36n1p571Test; 45. Zhang SJ, Chaudhry AS, Osman A, Shi CQ, Edwards GR, Dewhurst RJ, et al. Associative effects of ensiling mixtures of sweet sorghum and alfalfa on nutritive value, fermentation and methane characteristics. Anim Feed Sci Technol. 2015; 206(2015):29–38. http://dx.doi.org/10.1016/j.anifeedsci.2015.05.006Test.; https://revistamvz.unicordoba.edu.co/article/view/2549Test

  4. 4
    دورية أكاديمية