دورية أكاديمية

Glucagon-like peptide-1 receptor agonists: Рrospects for use in rheumatology ; Агонисты рецепторов глюкагоноподобного пептида-1: перспективы применения в ревматологии

التفاصيل البيبلوغرافية
العنوان: Glucagon-like peptide-1 receptor agonists: Рrospects for use in rheumatology ; Агонисты рецепторов глюкагоноподобного пептида-1: перспективы применения в ревматологии
المؤلفون: Е. L. Nasonov, Т. S. Panevin, Е. А. Troshina, Е. Л. Насонов, Т. С. Паневин, Е. А. Трошина
المصدر: Rheumatology Science and Practice; Vol 62, No 2 (2024); 135-144 ; Научно-практическая ревматология; Vol 62, No 2 (2024); 135-144 ; 1995-4492 ; 1995-4484
بيانات النشر: IMA-PRESS, LLC
سنة النشر: 2024
المجموعة: Rheumatology Science and Practice (E-Journal) / Научно-практическая ревматология
مصطلحات موضوعية: дулаглутид, immune-mediated rheumatic diseases, exenatide, liraglutide, semaglutide, dulaglutide, иммуновоспалительные ревматические заболевания, эксенатид, лираглутид, семаглутид
الوصف: Glucagon-like peptide-1 receptor agonists (ArGLP-1) are effective drugs for the treatment of type 2 diabetes mellitus and obesity. Recent studies in patients with a wide range of immunoinflammatory diseases suggest important pleiotropic mechanisms of action of these drugs, primarily related to the suppression of inflammation. The article presents new data indicating the prospects for the use of ArGLP-1 in immunoinflammatory rheumatic diseases, which dictates the need for clinical studies. GLP-1 receptor agonists are effective drugs for the treatment of type 2 diabetes mellitus and obesity. Recent studies in patients with a wide range of immune-mediated diseases suggest important pleiotropic mechanisms of action of these drugs, primarily related to the suppression of inflammation. The article presents new data indicating the prospects for the use of ArGLP-1 in immune-mediated rheumatic diseases, which dictates the need for clinical studies. ; Агонисты рецепторов глюкагоноподобного пептида-1 (АрГПП-1 ) являются эффективными препаратами для лечения сахарного диабета 2-го типа и ожирения. Результаты недавних исследований у пациентов с широким кругом иммуновоспалительных заболеваний свидетельствуют о важных плейотропных механизмах действия этих препаратов, в первую очередь связанных с подавлением воспаления. В статье представлены новые данные, свидетельствующие о перспективах применения АрГПП-1 при иммуновоспалительных ревматических заболеваниях, что диктует необходимость проведения клинических исследований.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
العلاقة: https://rsp.mediar-press.net/rsp/article/view/3542/2359Test; World Health Organization. Obesity: Preventing and managing the global epidemic: Report of a WHO consultation. World Health Organization; 2000.; Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, et al. Determinants and consequences of obesity. Am J Public Health. 2016;106(9):1656-1662. doi:10.2105/AJPH.2016.303326.7; Lobstein T, Jackson-Leach R, Powis J, Brinsden H, Gray M. World obesity atlas. 2023. URL: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023Test; Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol. 2020;49(3):810-823. doi:10.1093/ije/dyz273; Mogilenko DA, Sergushichev A, Artyomov MN. Systems immunology approaches to metabolism. Annu Rev Immunol. 2023;41:317-342. doi:10.1146/annurev-immunol-101220-031513; Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, et al. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med. 2023;15(723):eadf9382. doi:10.1126/scitranslmed.adf9382; Lim Y, Boster J. Obesity and comorbid conditions. Treasure Island (FL):StatPearls Publishing;2024. URL: https://www.ncbi.nlm.nih.gov/books/NBK574535Test; Nikiphorou E, Fragoulis GE. Inflammation, obesity and rheumatic disease: Common mechanistic links. A narrative review. Ther Adv Musculoskelet Dis. 2018;10(8):157-167. doi:10.1177/1759720X18783894; Shumnalieva R, Kotov G, Ermencheva P, Monov S. Pathogenic mechanisms and therapeutic approaches in obesity-related knee osteoarthritis. Biomedicines. 2023;12(1):9. doi:10.3390/biomedicines12010009; Wijesinghe SN, Badoume A, Nanus DE, Sharma-Oates A, Farah H, Certo M, et al. Obesity defined molecular endotypes in the synovium of patients with osteoarthritis provides a rationale for therapeutic targeting of fibroblast subsets. Clin Transl Med. 2023;13(4):e1232. doi:10.1002/ctm2.1232; Li X, Zhu J, Zhao W, Zhu Y, Zhu L, Shi R, et al. The causal effect of obesity on the risk of 15 autoimmune diseases: A Mendelian randomization study. Obes Facts. 2023;16(6):598-605. doi:10.1159/000534468; Sandberg ME, Bengtsson C, Källberg H, Wesley A, Klareskog L, Alfredsson L, et al. Overweight decreases the chance of achieving good response and low disease activity in early rheumatoid arthritis. Ann Rheum Dis. 2014;73(11):2029-2033. doi:10.1136/annrheumdis-2013-205094; Hollander NKD, Boeren AMP, van der Helm-van Mil AHM, van Steenbergen HW. Patients with obesity have more inflamed joints and higher CRP levels during the disease course in ACPApositive RA but not in ACPA-negative RA. Arthritis Res Ther. 2024;26(1):42. doi:10.1186/s13075-023-03248-8; Schulman E, Bartlett SJ, Schieir O, Andersen KM, Boire G, Pope JE, et al. Overweight, obesity, and the likelihood of achieving sustained remission in early rheumatoid arthritis: Results from a multicenter prospective cohort study. Arthritis Care Res (Hoboken). 2018;70(8):1185-1191. doi:10.1002/acr.23457; Lupoli R, Pizzicato P, Scalera A, Ambrosino P, Amato M, Peluso R, et al. Impact of body weight on the achievement of minimal disease activity in patients with rheumatic diseases: A systematic review and meta-analysis. Arthritis Res Ther. 2016;18(1):297. doi:10.1186/s13075-016-1194-8; Eder L, Thavaneswaran A, Chandran V, Cook RJ, Gladman DD. Obesity is associated with a lower probability of achieving sustained minimal disease activity state among patients with psoriatic arthritis. Ann Rheum Dis. 2015;74(5):813-817. doi:10.1136/annrheumdis-2013-204448; Liew JW, Gianfrancesco MA, Heckbert SR, Gensler LS. Relationship between body mass index, disease activity, and exercise in ankylosing spondylitis. Arthritis Care Res (Hoboken). 2022;74(8):1287-1293. doi:10.1002/acr.24565; Liew JW, Huang IJ, Louden DN, Singh N, Gensler LS. Association of body mass index on disease activity in axial spondyloarthritis: Systematic review and meta-analysis. RMD Open. 2020;6(1):e001225. doi:10.1136/rmdopen-2020-001225; Gomez A, Hani Butrus F, Johansson P, Åkerström E, Soukka S, Emamikia S, et al. Impact of overweight and obesity on patientreported health-related quality of life in systemic lupus erythematosus. Rheumatology (Oxford). 2021;60(3):1260-1272. doi:10.1093/rheumatology/keaa453; Borg A, Lindblom J, Gomez A, Soltani A, Enman Y, Heintz E, et al. Obesity is associated with pain and impaired mobility despite therapy in systemic lupus erythematosus. Front Med (Lausanne). 2023;10:1247354. doi:10.3389/fmed.2023.1247354; Choi EW, Kim HJ, Jung YC, Go HS, Seong JK. Effects of high fat diet-induced obesity on pathophysiology, immune cells, and therapeutic efficacy in systemic lupus erythematosus. Sci Rep. 2022;12(1):18532. doi:10.1038/s41598-022-21381-3; Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I. Obesity, inflammation, and immune system in osteoarthritis. Front Immunol. 2022;13:907750. doi:10.3389/fimmu.2022.907750; Zhang X, Gao L, Meng H, Zhang A, Liang Y, Lu J. Obesity alters immunopathology in cancers and inflammatory diseases. Obes Rev. 2023;24(12):e13638. doi:10.1111/obr.13638; Neumann E, Hasseli R, Ohl S, Lange U, Frommer KW, MüllerLadner U. Adipokines and autoimmunity in inflammatory arthritis. Cells. 2021;10(2):216. doi:10.3390/cells10020216; Frasca D, Romero M, Diaz A, Blomberg BB. Obesity accelerates age defects in B cells, and weight loss improves B cell function. Immun Ageing. 2023;20(1):35. doi:10.1186/s12979-023-00361-9; Zhang X, Meng J, Shi X, Quinet RJ, Davis W, Zakem J, et al. Lupus pathogenesis and autoimmunity are exacerbated by high fat diet-induced obesity in MRL/lpr mice. Lupus Sci Med. 2023;10(1):e000898. doi:10.1136/lupus-2023-000898; Matarese G. The link between obesity and autoimmunity. Science. 2023;379(6639):1298-1300. doi:10.1126/science.ade0113; Gialouri CG, Pappa M, Evangelatos G, Nikiphorou E, Fragoulis GE. Effect of body mass index on treatment response of biologic/targetedsynthetic DMARDs in patients with rheumatoid arthritis, psoriatic arthritis or axial spondyloarthritis. A systematic review. Autoimmun Rev. 2023;22(7):103357. doi:10.1016/j.autrev.2023.103357; Buch MH, Eyre S, McGonagle D. Persistent inflammatory and noninflammatory mechanisms in refractory rheumatoid arthritis. Nat Rev Rheumatol. 2021;17(1):17-33. doi:10.1038/s41584-020-00541-7; Tan Y, Buch MH. ‘Difficult to treat’ rheumatoid arthritis: Current position and considerations for next steps. RMD Open. 2022;8(2):e002387. doi:10.1136/rmdopen-2022-002387; Singla S, Ribeiro A, Torgutalp M, Mease PJ, Proft F. Difficultto-treat psoriatic arthritis (D2T PsA): A scoping literature review informing a GRAPPA research project. RMD Open. 2024;10(1):e003809. doi:10.1136/rmdopen-2023-003809; Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-271. doi:10.14412/1995-4484-2018-263-271; Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: An endocrine society scientific statement. Endocr Rev. 2018;39(2):79-132. doi:10.1210/er.2017-00253; Kloock S, Ziegler CG, Dischinger U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacol Ther. 2023;251:108549. doi:10.1016/j.pharmthera.2023.108549; Galindo RJ, Trujillo JM, Low Wang CC, McCoy RG. Advances in the management of type 2 diabetes in adults. BMJ Med. 2023;2(1):e000372. doi:10.1136/bmjmed-2022-000372; Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab. 2022;57:101351. doi:10.1016/j.molmet.2021.101351; Tomas A, Jones B, Leech C. New insights into beta-cell GLP-1 receptor and cAMP signaling. J Mol Biol. 2020;432(5):1347-1366. doi:10.1016/j.jmb.2019.08.009; Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol Metab. 2021;46:101102. doi:10.1016/j.molmet.2020.101102; Mariam Z, Niazi SK. Glucagon-like peptide agonists: A prospective review. Endocrinol Diabetes Metab. 2024;7(1):e462. doi:10.1002/edm2.462; Галстян ГР, Каратаева ЕА, Юдович ЕА. Эволюция агонистов рецепторов глюкагоноподобного пептида-1 в терапии сахарного диабета 2 типа. Сахарный диабет. 2017;20(4):286-298. doi:10.14341/DM8804; Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, et al. Glucagon-like peptide-1: A multi-faceted anti-inflammatory agent. Front Immunol. 2023;14:1148209. doi:10.3389/fimmu.2023.1148209; Chen J, Mei A, Wei Y, Li C, Qian H, Min X, et al. GLP-1 receptor agonist as a modulator of innate immunity. Front Immunol. 2022;13:997578. doi:10.3389/fimmu.2022.997578; Bendotti G, Montefusco L, Lunati ME, Usuelli V, Pastore I, Lazzaroni E, et al. The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharmacol Res. 2022;182:106320. doi:10.1016/j.phrs.2022.106320; Kim JW, Choe JY, Park SH. Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. Korean J Intern Med. 2022;37(1):13-26. doi:10.3904/kjim.2021.363; Nojima I, Wada J. Metformin and its immune-mediated effects in various diseases. Int J Mol Sci. 2023;24(1):755. doi:10.3390/ijms24010755; Salvatore T, Pafundi PC, Galiero R, Gjeloshi K, Masini F, Acierno C, et al. Metformin: A potential therapeutic tool for rheumatologists. Pharmaceuticals (Basel). 2020;13(9):234. doi:10.3390/ph13090234; Bharath LP, Nikolajczyk BS. The intersection of metformin and inflammation. Am J Physiol Cell Physiol. 2021;320(5):C873-C879. doi:10.1152/ajpcell.00604.2020; Насонов ЕЛ. Метотрексат при ревматоидном артрите – 2015: новые факты и идеи. Научно-практическая ревматология. 2015;53(4):421-433. doi:10.14412/1995-4484-2015-421-433; Baghdadi LR. Effect of methotrexate use on the development of type 2 diabetes in rheumatoid arthritis patients: A systematic review and meta-analysis. PLoS One. 2020;15(7):e0235637. doi:10.1371/journal.pone.0235637; Kingsmore KM, Grammer AC, Lipsky PE. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol. 2020;16(1):32-52. doi:10.1038/s41584-019-0337-0; Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41-58. doi:10.1038/nrd.2018.168; Qin C, Diaz-Gallo LM, Tang B, Wang Y, Nguyen TD, Harder A, et al. Repurposing antidiabetic drugs for rheumatoid arthritis: Results from a two-sample Mendelian randomization study. Eur J Epidemiol. 2023;38(7):809-819. doi:10.1007/s10654-023-01000-9; Karpouzas GA, Husni ME. Cardiovascular comorbidities in inflammatory rheumatic diseases. Rheum Dis Clin North Am. 2023;49(1):XV-XVI. doi:10.1016/j.rdc.2022.09.001; Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745-1759. doi:10.1016/S0140-6736(19)30417-9; Weng Q, Chen Q, Jiang T, Zhang Y, Zhang W, Doherty M, et al. Global burden of early-onset osteoarthritis, 1990–2019: Results from the Global Burden of Disease Study 2019. Ann Rheum Dis. 2024:ard-2023-225324. doi:10.1136/ard-2023-225324; Alexander LAM, Ln D, Eg Z, Is D, Ay K, Ss R, et al. Pharmacological management of osteoarthritis with a focus on symptomatic slow-acting drugs: Recommendations from leading Russian experts. J Clin Rheumatol. 2021;27(8):e533-e539. doi:10.1097/RHU.0000000000001507; Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2020; 72(2):149-162. doi:10.1002/acr.24131; Bruyère O, Honvo G, Veronese N, Arden NK, Branco J, Curtis EM, et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin Arthritis Rheum. 2019;49(3):337-350. doi:10.1016/j.semarthrit.2019.04.008; Salman LA, Ahmed G, Dakin SG, Kendrick B, Price A. Osteoarthritis: A narrative review of molecular approaches to disease management. Arthritis Res Ther. 2023;25(1):27. doi:10.1186/s13075-023-03006-w; Shumnalieva R, Kotov G, Monov S. Obesity-related knee osteoarthritis – Current concepts. Life (Basel). 2023;13(8):1650. doi:10.3390/life13081650; Batushansky A, Zhu S, Komaravolu RK, South S, MehtaD’souza P, Griffin TM. Fundamentals of OA. An initiative of osteoarthritis and cartilage. Obesity and metabolic factors in OA. Osteoarthritis Cartilage. 2022;30(4):501-515. doi:10.1016/j.joca.2021.06.013; D’Apuzzo MR, Novicoff WM, Browne JA. The John Insall Award: Morbid obesity independently impacts complications, mortality, and resource use after TKA. Clin Orthop Relat Res. 2015;473(1):57- 63. doi:10.1007/s11999-014-3668-9; Lawrence KW, Sobba W, Rajahraman V, Schwarzkopf R, Rozell JC. Does body mass index influence improvement in patient reported outcomes following total knee arthroplasty? A retrospective analysis of 3918 cases. Knee Surg Relat Res. 2023;35(1):21. doi:10.1186/s43019-023-00195-1; Chen L, Jia C, Yang H. Causal effect of higher glycated hemoglobin (HbA1c) levels on knee osteoarthritis risk: A Mendelian randomization study. Rheumatol Ther. 2023;10(1):239-247. doi:10.1007/s40744-022-00510-4; Weijers JM, Müskens WD, van Riel PLCM. Effect of significant weight loss on disease activity: Reason to implement this nonpharmaceutical intervention in daily clinical practice. RMD Open. 2021;7:e001498. doi:10.1136/rmdopen-2020-001498; Mobasheri A, Saarakkala S, Finnilä M, Karsdal MA, Bay-Jensen AC, van Spil WE. Recent advances in understanding the phenotypes of osteoarthritis. F1000Res. 2019;8:F1000 Faculty Rev-2091. doi:10.12688/f1000research.20575.1; Katsoula G, Kreitmaier P, Zeggini E. Insights into the molecular landscape of osteoarthritis in human tissues. Curr Opin Rheumatol. 2022;34(1):79-90. doi:10.1097/BOR.0000000000000853; Calvet J, García-Manrique M, Berenguer-Llergo A, Orellana C, Cirera SG, Llop M, et al. Metabolic and inflammatory profiles define phenotypes with clinical relevance in female knee osteoarthritis patients with joint effusion. Rheumatology (Oxford). 2023;62(12):3875-3885. doi:10.1093/rheumatology/kead135; Schadler P, Lohberger B, Thauerer B, Faschingbauer M, Kullich W, Stradner MH, et al. The association of blood biomarkers and body mass index in knee osteoarthritis: A cross-sectional study. Cartilage. 2022;13(1):19476035211069251. doi:10.1177/19476035211069251; Angelini F, Widera P, Mobasheri A, Blair J, Struglics A, Uebelhoer M, et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann Rheum Dis. 2022;81(5):666-675. doi:10.1136/annrheumdis-2021-221763; Nanus DE, Wijesinghe SN, Pearson MJ, Hadjicharalambous MR, Rosser A, Davis ET, Lindsay MA, et al. Regulation of the inflammatory synovial fibroblast phenotype by metastasis-associated lung adenocarcinoma transcript 1 long noncoding RNA in obese patients with osteoarthritis. Arthritis Rheumatol. 2020;72(4):609- 619. doi:10.1002/art.41158; Pearson MJ, Herndler-Brandstetter D, Tariq MA, Nicholson TA, Philp AM, Smith HL, et al. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep. 2017;7(1):3451. doi:10.1038/s41598-017-03759-w; Wijesinghe SN, Nicholson T, Tsintzas K, Jones SW. Involvements of long noncoding RNAs in obesity-associated inflammatory diseases. Obes Rev. 2021;22(4):e13156. doi:10.1111/obr.13156; Zhao G, Zhu S, Zhang F, Zhang X, Zhang X, Li T, et al. Global burden of osteoarthritis associated with high body mass index in 204 countries and territories, 1990–2019: Findings from the Global Burden of Disease Study 2019. Endocrine. 2023;79(1):60-71. doi:10.1007/s12020-022-03201-w; Liu M, Jin F, Yao X, Zhu Z. Disease burden of osteoarthritis of the knee and hip due to a high body mass index in China and the USA: 1990–2019 findings from the global burden of disease study 2019. BMC Musculoskelet Disord. 2022;23(1):63. doi:10.1186/s12891-022-05027-z; Messier SP, Beavers DP, Queen K, Mihalko SL, Miller GD, Losina E, et al. Effect of diet and exercise on knee pain in patients with osteoarthritis and overweight or obesity: A randomized clinical trial. JAMA. 2022;328(22):2242-2251. doi:10.1001/jama.2022.21893; He M, Lu B, Opoku M, Zhang L, Xie W, Jin H, et al. Metformin prevents or delays the development and progression of osteoarthritis: New insight and mechanism of action. Cells. 2022;11(19):3012. doi:10.3390/cells11193012; Song Y, Wu Z, Zhao P. The effects of metformin in the treatment of osteoarthritis: Current perspectives. Front Pharmacol. 2022;13: 952560. doi:10.3389/fphar.2022.952560; Lai FTT, Yip BHK, Hunter DJ, Rabago DP, Mallen CD, Yeoh EK, et al. Metformin use and the risk of total knee replacement among diabetic patients: A propensity-score-matched retrospective cohort study. Sci Rep. 2022;12(1):11571. doi:10.1038/s41598-022-15871-7; Baker MC, Sheth K, Liu Y, Lu D, Lu R, Robinson WH. Development of osteoarthritis in adults with type 2 diabetes treated with metformin vs a sulfonylurea. JAMA Netw Open. 2023;6(3):e233646. doi:10.1001/jamanetworkopen.2023.3646; Alimoradi N, Tahami M, Firouzabadi N, Haem E, Ramezani A. Metformin attenuates symptoms of osteoarthritis: Role of genetic diversity of Bcl2 and CXCL16 in OA. Arthritis Res Ther. 2023;25(1):35. doi:10.1186/s13075-023-03025-7; Alharbi SH. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther Adv Endocrinol Metab. 2024;15:20420188231222367. doi:10.1177/20420188231222367; Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, Rittig N, et al. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 2024;36(1):130-143.e5. doi:10.1016/j.cmet.2023.11.009; Meurot C, Jacques C, Martin C, Sudre L, Breton J, Rattenbach R, et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat. 2022;32:121-129. doi:10.1016/j.jot.2022.02.001; Nauck M. Incretin therapies: Highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metabol. 2016;18:203-216. doi:10.1111/dom.12591; Kim S, Jeong J, Jung HS, Kim B, Kim YE, Lim DS, et al. Antiinflammatory effect of glucagon like peptide-1 receptor agonist, exendin-4, through modulation of IB1/JIP1 expression and JNK signaling in stroke. Exp Neurobiol. 2017;26(4):227-239. doi:10.5607/en.2017.26.4.227; Parthsarathy V, Holscher C. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur J Pharmacol. 2013;700:42-50. doi:10.1016/j.ejphar.2012.12.012; Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S, et al. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab. 2012;97(1):198-207. doi:10.1210/jc.2011-1508; Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J-I. Glucagon-like peptide-1 inhibits LPS-induced IL-1β production in cultured rat astrocytes. Neurosci Res. 2006;55:352-360. doi:10.1016/j.neures.2006.04.008; Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625-635. doi:10.1038/nrrheum.2010.159; Culemann S, Grüneboom A, Nicolás-Ávila JÁ, Weidner D, Lämmle KF, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572(7771):670-675. doi:10.1038/s41586-019-1471-1; Wang N, Liu X, Shi L, Liu Y, Guo S, Liu W, et al. Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomater Sci. 2020;8(6):1604-1614. doi:10.1039/c9bm01426h; Que Q, Guo X, Zhan L, Chen S, Zhang Z, Ni X, et al. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J Inflamm (Lond). 2019;16:13. doi:10.1186/s12950-019-0218-y; Berenbaum F, Meurot C, Breton J, Sudre L, Bougault C, Rattenbach R, et al. THU0055 Anti-degradative and pro-chondrogenic properties of liraglutide, a glucagon-like peptide 1 receptor agonist: Evidence from preclinical studies and implication for osteoarthritis. Ann Rheum Dis. 2020;79:1-239. doi:10.1136/annrheumdis2020-eular.4606; Chen J, Xie JJ, Shi KS, Gu YT, Wu CC, Xuan J, et al. Glucagonlike peptide-1 receptor regulates endoplasmic reticulum stressinduced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis. 2018;9(2):212. doi:10.1038/s41419-017-0217-y; Feng Y, Su L, Zhong X, Guohong W, Xiao H, Li Y, et al. Exendin-4 promotes proliferation and differentiation of MC3T3- E1 osteoblasts by MAPKs activation. J Mol Endocrinol. 2016;56(3):189-199. doi:10.1530/JME-15-0264; Berenbaum F, Meurot C, Martin C, Breton J, Jacques C, Favret J, et al. Beneficial structural impact of liraglutide, a GLP1 receptor agonist, in three inflammatory and post-traumatic OA animal models. Arthritis Rheumatol. 2022; 74(Suppl 9). https://acrabstracts.org/abstract/beneficial-structural-impact-of-liraglutidea-glp1-receptor-agonist-in-three-inflammatory-and-post-traumatic-oa-animal-modelsTest/.; Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12. doi:10.1186/1472-6793-11-12; Pacheco-Pantoja EL, Dillon JP, Wilson PJ, Fraser WD, Gallagher JA. c-Fos induction by gut hormones and extracellular ATP in osteoblastic-like cell lines. Purinergic Signal. 2016;12(4):647- 651. doi:10.1007/s11302-016-9526-3; Mohsin S, Baniyas MM, AlDarmaki RS, Tekes K, Kalász H, Adeghate EA. An update on therapies for the treatment of diabetes-induced osteoporosis. Expert Opin Biol Ther. 2019;19(9):937-948. doi:10.1080/14712598.2019.1618266; Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C. Regulation of adipocyte formation by GLP-1/GLP1R signaling. J Biol Chem. 2012;287(9):6421-6430. doi:10.1074/jbc.M111.310342; Sanz C, Vázquez P, Blázquez C, Barrio PA, Alvarez Mdel M, Blázquez E. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab. 2010;298(3):E634-E643. doi:10.1152/ajpendo.00460.2009; Jolivalt CG, Fineman M, Deacon CF, Carr RD, Calcutt NA. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diabetes Obes Metab. 2011;13(11):990-1000. doi:10.1111/j.1463-1326.2011.01431.x; Gong N, Xiao Q, Zhu B, Zhang CY, Wang YC, Fan H, et al. Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J Neurosci. 2014;34(15):5322- 5334. doi:10.1523/JNEUROSCI.4703-13.2014; Vincent TL. Peripheral pain mechanisms in osteoarthritis. Pain. 2020;161(Suppl 1):S138-S146. doi:10.1097/j.pain.0000000000001923; Huang XM, Zhong X, Du YJ, Guo YY, Pan TR. Effects of glucagon-like peptide-1 receptor agonists on glucose excursion and inflammation in overweight or obese type 2 diabetic patients. World J Diabetes. 2023;14(8):1280-1288. doi:10.4239/wjd.v14.i8.1280; Gudbergsen H, Overgaard A, Henriksen M, Wæhrens EE, Bliddal H, Christensen R, et al. Liraglutide after diet-induced weight loss for pain and weight control in knee osteoarthritis: A randomized controlled trial. Am J Clin Nutr. 2021;113(2):314-323. doi:10.1093/ajcn/nqaa328; Zhu H, Zhou L, Wang Q, Cai Q, Yang F, Jin H, et al. Glucagonlike peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: Findings from the Shanghai Osteoarthritis Cohort. Ann Rheum Dis. 2023;82(9):1218-1226. doi:10.1136/ard-2023-223845; Елисеев МС, Паневин ТС, Желябина ОВ, Насонов ЕЛ. Перспективы применения метформина у пациентов с нарушением уратного обмена. Терапевтический архив. 2021;93 (5):628- 634. doi:10.26442/00403660.2021.05.200795; Abdallah MS, Alarfaj SJ, Saif DS, El-Naggar ME, Elsokary MA, Elsawah HK, et al. The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: A proofof-concept, randomized, double-blind, placebo-controlled trial. Int Immunopharmacol. 2021;95:107575. doi:10.1016/j.intimp.2021.107575; Thornton CC, Al-Rashed F, Calay D, Birdsey GM, Bauer A, Mylroie H, et al. Methotrexate-mediated activation of an AMPKCREB-dependent pathway: A novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis. 2016;75(2):439-448. doi:10.1136/annrheumdis-2014-206305; Kreiner FF, von Scholten BJ, Kurtzhals P, Gough SCL. Glucagon-like peptide-1 receptor agonists to expand the healthy lifespan: Current and future potentials. Aging Cell. 2023;22(5):e13818. doi:10.1111/acel.13818; Karacabeyli D, Lacaille D. Glucagon-like peptide 1 receptor agonists in patients with inflammatory arthritis or psoriasis: A scoping review. J Clin Rheumatol. 2024;30(1):26-31. doi:10.1097/RHU.0000000000001949; Vilarrasa E, Nicolau J, de la Cueva P, Goday A, Gallardo F, Martorell A, et al. Glucagon-like peptide-1 agonists for treating obesity in patients with immune-mediated skin diseases. Actas Dermosifiliogr. 2024;115(1):56-65. doi:10.1016/j.ad.2023.06.017; Rajagopal S, Alruwaili F, Mavratsas V, Serna MK, Murthy VL, Raji M. Glucagon-like peptide-1 receptor agonists in the treatment of idiopathic inflammatory myopathy: From mechanisms of action to clinical applications. Cureus. 2023;15(12):e51352. doi:10.7759/cureus.51352; Du X, Zhang H, Zhang W, Wang Q, Wang W, Ge G, et al. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol. 2019;75:105732. doi:10.1016/j.intimp.2019.105732; Tao Y, Ge G, Wang Q, Wang W, Zhang W, Bai J, et al. Exenatide ameliorates inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. IUBMB Life. 2019;71(7):969-977. doi:10.1002/iub.2031; Zheng W, Pan H, Wei L, Gao F, Lin X. Dulaglutide mitigates inflammatory response in fibroblast-like synoviocytes. Int Immunopharmacol. 2019;74:105649. doi:10.1016/j.intimp.2019.05.034; Sullivan C, Gaoatswe G, Gibney J, Healey ML, Doran M, Kane D, et al. Treatment with the glucagon-like peptide-1 analogue liraglutide is associated with amelioration of disease activity in a prospective cohort study of patients with inflammatory arthritis. Arthritis Rheum. 2013;65(Suppl 10):S630-S631.; Hogan AE, Tobin AM, Ahern T, Corrigan MA, Gaoatswe G, Jackson R, et al. Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: Lessons from obesity, diabetes and psoriasis. Diabetologia. 2011;54(11):2745-2754. doi:10.1007/s00125-011-2232-3; Yang J, Wang Z, Zhang X. GLP-1 receptor agonist impairs keratinocytes inflammatory signals by activating AMPK. Exp Mol Pathol. 2019;107:124-128. doi:10.1016/j.yexmp.2019.01.014; Buysschaert M, Baeck M, Preumont V, Marot L, Hendrickx E, Van Belle A, et al. Improvement of psoriasis during glucagon-like peptide-1 analogue therapy in type 2 diabetes is associated with decreasing dermal γδ T-cell number: A prospective case-series study. Br J Dermatol. 2014;171(1):155-161. doi:10.1111/bjd.12886; Buysschaert M, Tennstedt D, Preumont V. Improvement of psoriasis during exenatide treatment in a patient with diabetes. Diabetes Metab. 2012;38(1):86-88. doi:10.1016/j.diabet.2011.11.004; Ahern T, Tobin AM, Corrigan M, Hogan A, Sweeney C, Kirby B, et al. Glucagon-like peptide-1 analogue therapy for psoriasis patients with obesity and type 2 diabetes: A prospective cohort study. J Eur Acad Dermatol Venereol. 2013;27(11):1440-1443. doi:10.1111/j.1468-3083.2012.04609.x; Xu X, Lin L, Chen P, Yu Y, Chen S, Chen X, et al. Treatment with liraglutide, a glucagon-like peptide-1 analogue, improves effectively the skin lesions of psoriasis patients with type 2 diabetes: A prospective cohort study. Diabetes Res Clin Pract. 2019;150:167-173. doi:10.1016/j.diabres.2019.03.002; Costanzo G, Curatolo S, Busà B, Belfiore A, Gullo D. Two birds one stone: Semaglutide is highly effective against severe psoriasis in a type 2 diabetic patient. Endocrinol Diabetes Metab Case Rep. 2021;2021:21-0007. doi:10.1530/EDM-21-0007; Malavazos AE, Meregalli C, Sorrentino F, Vignati A, Dubini C, Scravaglieri V, et al. Semaglutide therapy decreases epicardial fat inflammation and improves psoriasis severity in patients affected by abdominal obesity and type-2 diabetes. Endocrinol Diabetes Metab Case Rep. 2023;2023(3):23-0017. doi:10.1530/EDM-23-0017; Lin L, Xu X, Yu Y, Ye H, He X, Chen S, et al. Glucagon-like peptide-1 receptor agonist liraglutide therapy for psoriasis patients with type 2 diabetes: A randomized-controlled trial. J Dermatolog Treat. 2022;33(3):1428-1434. doi:10.1080/09546634.2020.1826392; Chen P, Lin L, Xu X, Zhang Z, Cai W, Shao Z, et al. Liraglutide improved inflammation via mediating IL-23/Th-17 pathway in obese diabetic mice with psoriasiform skin. J Dermatolog Treat. 2021;32(7):745-751. doi:10.1080/09546634.2019.1708853; Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021; 397(10275):754-766. doi:10.1016/S0140-6736(21)00184-7; Насонов ЕЛ. Новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний: фокус на ингибиторы интерлейкина 17. Научно-практическая ревматология. 2017;55(1):68-86. doi:10.14412/1995-4484-2017-68-86; Lund LC, Højlund M, Henriksen DP, Hallas J, Kristensen KB. Sodium-glucose cotransporter-2 inhibitors and the risk of gout: A Danish population based cohort study and symmetry analysis. Pharmacoepidemiol Drug Saf. 2021;30(10):1391-1395. doi:10.1002/pds.5252; Fralick M, Chen SK, Patorno E, Kim SC. Assessing the risk for gout with sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes: A population-based cohort study. Ann Intern Med. 2020;172(3):186-194. doi:10.7326/M19-2610; Wood DT, Waterbury NV, Lund BC. Sodium glucose cotransporter 2 inhibitors and gout risk: A sequence symmetry analysis. Clin Rheumatol. 2023;42(9):2469-2475. doi:10.1007/s10067-023-06647-z; Паневин ТС, Елисеев МС, Шестакова МВ, Насонов ЕЛ. Преимущества терапии ингибиторами натрий-глюкозного котранспортера 2 типа у пациентов с сахарным диабетом 2 типа в сочетании с гиперурикемией и подагрой. Терапевтический архив. 2020;(5):110-118. doi:10.26442/00403660.2020.05.000633; Hong Y, Lee JH, Jeong KW, Choi CS, Jun HS. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J Cachexia Sarcopenia Muscle. 2019;10(4):903- 918. doi:10.1002/jcsm.12434; Gurjar AA, Kushwaha S, Chattopadhyay S, Das N, Pal S, China SP, et al. Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism. 2020;103:154044. doi:10.1016/j.metabol.2019.154044; Kamiya M, Mizoguchi F, Yasuda S. Amelioration of inflammatory myopathies by glucagon-like peptide-1 receptor agonist via suppressing muscle fibre necroptosis. J Cachexia Sarcopenia Muscle. 2022;13(4):2118-2131. doi:10.1002/jcsm.13025; Deng F, Wu W, Fan X, Zhong X, Wang N, Wang Y, et al. Dulaglutide protects mice against diabetic sarcopenia-mediated muscle injury by inhibiting inflammation and regulating the differentiation of myoblasts. Int J Endocrinol. 2023;2023:9926462. doi:10.1155/2023/9926462; Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol. 2023;14:1191815. doi:10.3389/fimmu.2023.1191815; Xu F, Cao H, Chen Z, Gu H, Guo W, Lin B, et al. Short-term GLP-1 receptor agonist exenatide ameliorates intramyocellular lipid deposition without weight loss in ob/ob mice. Int J Obes (Lond). 2020;44(4):937-947. doi:10.1038/s41366-019-0513-y; Wang L, Guo F, Wei S, Zhao R. Divergent effects of GLP-1 analogs exendin-4 and exendin-9 on the expression of myosin heavy chain isoforms in C2C12 myotubes. Peptides. 2011;32(6):1313- 1319. doi:10.1016/j.peptides.2011.03.018; Khin PP, Hong Y, Yeon M, Lee DH, Lee JH, Jun HS. Dulaglutide improves muscle function by attenuating inflammation through OPA-1-TLR-9 signaling in aged mice. Aging (Albany NY). 2021;13(18):21962-21974. doi:10.18632/aging.203546; Yamada S, Ogura Y, Inoue K, Tanabe J, Sugaya T, Ohata K, et al. Effect of GLP-1 receptor agonist, liraglutide, on muscle in spontaneously diabetic torii fatty rats. Mol Cell Endocrinol. 2022;539:111472. doi:10.1016/j.mce.2021.111472; Abdulla H, Phillips BE, Wilkinson DJ, Limb M, Jandova T, Bass JJ, et al. Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle. Aging Cell. 2020;19(9):e13202. doi:10.1111/acel.13202; Ozeki Y, Masaki T, Kamata A, Miyamoto S, Yoshida Y, Okamoto M, et al. The effectiveness of GLP-1 receptor agonist semaglutide on body composition in elderly obese diabetic patients: A pilot study. Medicines (Basel). 2022;9(9):47. doi:10.3390/medicines9090047; Perna S, Guido D, Bologna C, Solerte SB, Guerriero F, Isu A, et al. Liraglutide and obesity in elderly: Efficacy in fat loss and safety in order to prevent sarcopenia. A perspective case series study. Aging Clin Exp Res. 2016;28(6):1251-1257. doi:10.1007/s40520-015-0525-y; Smits MM, Muskiet MH, Tonneijck L, Kramer MH, Diamant M, van Raalte DH, et al. GLP-1 receptor agonist exenatide increases capillary perfusion independent of nitric oxide in healthy overweight men. Arterioscler Thromb Vasc Biol. 2015;35(6):1538-1543. doi:10.1161/ATVBAHA.115.305447; Santo RCDE, Baker JF, Santos LPD, Silva MMMD, Xavier RM. Sarcopenia in immune-mediated rheumatic diseases-review. J Clin Rheumatol. 2023;29(7):354-362. doi:10.1097/RHU.0000000000001913; Salaffi F, Di Matteo A, Farah S, Di Carlo M. Inflammaging and frailty in immune-mediated rheumatic diseases: How to address and score the issue. Clin Rev Allergy Immunol. 2023;64(2):206-221. doi:10.1007/s12016-022-08943-z; Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi:10.14412/1995-4484-2017-409-419; Насонов ЕЛ, Соловьев СК, Аршинов АВ. Системная красная волчанка: история и современность. Научно-практическая ревматология. 2022;60(4):397-412. doi:10.47360/1995-4484-2022-397-412; Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat Rev Cardiol. 2023;20(7):463-474. doi:10.1038/s41569-023-00849-3; Agca R, Smulders Y, Nurmohamed M. Cardiovascular disease risk in immune-mediated inflammatory diseases: Recommendations for clinical practice. Heart. 2022;108(1):73-79. doi:10.1136/heartjnl-2019-316378; Mehta PK, Levit RD, Wood MJ, Aggarwal N, O’Donoghue ML, Lim SS, et al.; American College of Cardiology Cardiovascular Disease in Women Committee. Chronic rheumatologic disorders and cardiovascular disease risk in women. Am Heart J Plus. 2023;27:100267. doi:10.1016/j.ahjo.2023.100267; Kwon OC, Han K, Chun J, Kim R, Hong SW, Kim JH, et al.; Gastroenterology, Neurology and Rheumatology National Data Science Research (GUARANTEE) Group. Effects of immunemediated inflammatory diseases on cardiovascular diseases in patients with type 2 diabetes: A nationwide population-based study. Sci Rep. 2022;12(1):11548. doi:10.1038/s41598-022-15436-8; https://rsp.mediar-press.net/rsp/article/view/3542Test
DOI: 10.47360/1995-4484-2024-135-144
الإتاحة: https://doi.org/10.47360/1995-4484-2024-135-144Test
https://doi.org/10.2105/AJPH.2016.303326.7Test
https://doi.org/10.1146/annurev-immunol-101220-031513Test
https://doi.org/10.1126/scitranslmed.adf9382Test
https://doi.org/10.1177/1759720X18783894Test
https://doi.org/10.3390/biomedicines12010009Test
https://doi.org/10.1002/ctm2.1232Test
https://doi.org/10.1159/000534468Test
https://doi.org/10.1136/annrheumdis-2013-205094Test
https://doi.org/10.1186/s13075-023-03248-8Test
حقوق: Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
رقم الانضمام: edsbas.C922746F
قاعدة البيانات: BASE