يعرض 1 - 10 نتائج من 5,340 نتيجة بحث عن '"F', وقت الاستعلام: 1.26s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    مصطلحات موضوعية: Adsorption, Brilliant blue, Kinetic, Sawdust, Simulated effluent

    وصف الملف: 18 páginas; application/pdf

    العلاقة: Molecules; 1. Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K. Biochar production, activation and adsorptive applications: A review. Environ. Chem. Lett. 2021, 19, 2237–2259. [CrossRef]; 2. Haleem, A.; Shafiq, A.; Chen, S.-Q.; Nazar, M. A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28, 1081. [CrossRef]; 3. Alias, S.S.; Harun, Z.; Azhar, F.H.; Ibrahim, S.A.; Johar, B. Comparison between commercial and synthesised nano flower-like rutile TiO2 immobilised on green super adsorbent towards dye wastewater treatment. J. Clean. Prod. 2019, 251, 119448. [CrossRef]; 4. Shah, L.A.; Malik, T.; Siddiq, M.; Haleem, A.; Sayed, M.; Naeem, A. TiO2 nanotubes doped poly(vinylidene fluoride) polymer membranes (PVDF/TNT) for efficient photocatalytic degradation of brilliant green dye. J. Environ. Chem. Eng. 2019, 7, 103291. [CrossRef]; 5. Bhatti, H.N.; Safa, Y.; Yakout, S.M.; Shair, O.H.; Iqbal, M.; Nazir, A. Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. Int. J. Biol. Macromol. 2020, 150, 861–870. [CrossRef]; 6. Wekoye, J.N.; Wanyonyi, W.C.; Wangila, P.T.; Tonui, M.K. Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environ. Chem. Ecotoxicol. 2020, 2, 24–31. [CrossRef]; 7. Ortiz-Martínez, A.; Godínez, L.A.; Martínez-Sánchez, C.; García-Espinoza, J.; Robles, I. Preparation of modified carbon paste electrodes from orange peel and used coffee ground. New materials for the treatment of dye-contaminated solutions using electro-Fenton processes. Electrochim. Acta 2021, 390, 138861. [CrossRef]; 8. Dotto, J.; Fagundes-Klen, M.R.; Veit, M.T.; Palácio, S.M.; Bergamasco, R. Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J. Clean. Prod. 2018, 208, 656–665. [CrossRef]; 9. Arunprasath, T.; Sudalai, S.; Meenatchi, R.; Jeyavishnu, K.; Arumugam, A. Biodegradation of triphenylmethane dye malachite green by a newly isolated fungus strain. Biocatal. Agric. Biotechnol. 2019, 17, 672–679. [CrossRef]; 11. de Salomón, Y.L.O.; Georgin, J.; Franco, D.S.P.; Netto, M.S.; Foletto, E.L.; Allasia, D.; Dotto, G.L. Application of seed residues from Anadenanthera macrocarpa and Cedrela fissilis as alternative adsorbents for remarkable removal of methylene blue dye in aqueous solutions. Environ. Sci. Pollut. Res. 2020, 28, 2342–2354. [CrossRef]; 12. Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [CrossRef]; 13. Tahir, M.A.; Bhatti, H.N.; Iqbal, M. Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies. J. Environ. Chem. Eng. 2016, 4, 2431–2439. [CrossRef]; 14. Jawad, A.H.; Abdulhameed, A.S.; Reghioua, A.; Yaseen, Z.M. Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int. J. Biol. Macromol. 2020, 163, 756–765. [CrossRef]; 15. Puchana-Rosero, M.; Adebayo, M.A.; Lima, E.C.; Machado, F.M.; Thue, P.S.; Vaghetti, J.C.; Umpierres, C.S.; Gutterres, M. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 105–115. [CrossRef]; 16. Yunus, Z.M.; Al-Gheethi, A.; Othman, N.; Hamdan, R.; Ruslan, N.N. Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: A microstructure and techno-economic analysis. J. Clean. Prod. 2019, 251, 119738. [CrossRef]; 17. Rashid, J.; Tehreem, F.; Rehman, A.; Kumar, R. Synthesis using natural functionalization of activated carbon from pumpkin peels for decolourization of aqueous methylene blue. Sci. Total. Environ. 2019, 671, 369–376. [CrossRef]; 18. Kang, K.; Nanda, S.; Lam, S.S.; Zhang, T.; Huo, L.; Zhao, L. Enhanced fuel characteristics and physical chemistry of microwave hydrochar for sustainable fuel pellet production via co-densification. Environ. Res. 2020, 186, 109480. [CrossRef]; 19. Sarker, T.R.; Pattnaik, F.; Nanda, S.; Dalai, A.K.; Meda, V.; Naik, S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere 2021, 284, 131372. [CrossRef]; 20. Supong, A.; Bhomick, P.C.; Baruah, M.; Pongener, C.; Sinha, U.B.; Sinha, D. Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations. Sustain. Chem. Pharm. 2019, 13, 100159. [CrossRef]; 21. Zazycki, M.A.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 2018, 171, 57–65. [CrossRef]; 22. Wang, Y.; Wang, S.-L.; Xie, T.; Cao, J. Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant. Bioresour. Technol. 2020, 316, 123929. [CrossRef] [PubMed]; 23. Van Thuan, T.; Quynh, B.T.P.; Nguyen, T.D.; Ho, V.T.T.; Bach, L.G. Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surf. Interfaces 2017, 6, 209–217. [CrossRef]; 24. Enniya, I.; Rghioui, L.; Jourani, A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain. Chem. Pharm. 2018, 7, 9–16. [CrossRef]; 25. Sajjadi, S.-A.; Meknati, A.; Lima, E.C.; Dotto, G.L.; Mendoza-Castillo, D.I.; Anastopoulos, I.; Alakhras, F.; Unuabonah, E.I.; Singh, P.; Hosseini-Bandegharaei, A. A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J. Environ. Manag. 2019, 236, 34–44. [CrossRef] [PubMed]; 26. Kumar, A.; Gupta, H. Activated carbon from sawdust for naphthalene removal from contaminated water. Environ. Technol. Innov. 2020, 20, 101080. [CrossRef]; 27. Chikri, R.; Elhadiri, N.; Benchanaa, M.; El Maguana, Y. Efficiency of Sawdust as Low-Cost Adsorbent for Dyes Removal. J. Chem. 2020, 2020, 8813420. [CrossRef]; 28. Mallakpour, S.; Sirous, F.; Hussain, C.M. Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation technologies. Adv. Colloid Interface Sci. 2021, 295, 102492. [CrossRef]; 29. Vieira, L.H.S.; Sabino, C.M.S.; Júnior, F.H.S.; Rocha, J.S.; Castro, M.O.; Alencar, R.S.; da Costa, L.S.; Viana, B.C.; de Paula, A.J.; Soares, J.M.; et al. Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent. Carbon 2020, 161, 758–771. [CrossRef]; 30. Liu, X.; Wang, Y.; Zhang, T.C.; Xiang, G.; Wang, X.; Yuan, S. One-Pot Synthesis of a Magnetic TiO2/PTh/γ-Fe2O3 Heterojunction Nanocomposite for Removing Trace Arsenite via Simultaneous Photocatalytic Oxidation and Adsorption. Ind. Eng. Chem. Res. 2020, 60, 528–540. [CrossRef]; 31. Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Pivehzhani, O.A.; Johan, M.R. Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega 2020, 5, 20684–20697. [CrossRef]; 32. Wang, Y.; Zhang, Y.; Zhang, T.C.; Xiang, G.; Wang, X.; Yuan, S. Removal of Trace Arsenite through Simultaneous Photocatalytic Oxidation and Adsorption by Magnetic Fe3O4@PpPDA@TiO2 Core–Shell Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 8495–8504. [CrossRef]; 33. Du, Q.; Zhang, S.; Song, J.; Zhao, Y.; Yang, F. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions. J. Hazard. Mater. 2020, 389, 122115. [CrossRef]; 39. Lütke, S.F.; Igansi, A.V.; Pegoraro, L.; Dotto, G.L.; Pinto, L.A.; Cadaval, T.R. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 2019, 7, 103396. [CrossRef]; 40. Thue, P.S.; Lima, E.C.; Sieliechi, J.M.; Saucier, C.; Dias, S.L.; Vaghetti, J.C.; Rodembusch, F.S.; Pavan, F.A. Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J. Colloid Interface Sci. 2017, 486, 163–175. [CrossRef]; 41. Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.-P. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 2014, 197, 316–323. [CrossRef]; 42. Ogungbenro, A.E.; Quang, D.V.; Al-Ali, K.A.; Vega, L.F.; Abu-Zahra, M.R. Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. J. Environ. Chem. Eng. 2020, 8, 104257. [CrossRef]; 43. Ferreira, S.D.; Altafini, C.R.; Perondi, D.; Godinho, M. Pyrolysis of Medium Density Fiberboard (MDF) wastes in a screw reactor. Energy Convers. Manag. 2015, 92, 223–233. [CrossRef]; 44. Duan, S.; Ma, W.; Pan, Y.; Meng, F.; Yu, S.; Wu, L. Synthesis of magnetic biochar from iron sludge for the enhancement of Cr (VI) removal from solution. J. Taiwan Inst. Chem. Eng. 2017, 80, 835–841. [CrossRef]; 45. Fontana, K.B.; Chaves, E.S.; Sanchez, J.D.; Watanabe, E.R.; Pietrobelli, J.M.; Lenzi, G.G. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol. Environ. Saf. 2016, 124, 329–336. [CrossRef] [PubMed]; 46. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [CrossRef]; 47. da Silva, M.C.; Schnorr, C.; Lütke, S.F.; Knani, S.; Nascimento, V.X.; Lima, C.; Thue, P.S.; Vieillard, J.; Silva, L.F.; Dotto, G.L. KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption. Chem. Eng. Res. Des. 2022, 187, 387–396. [CrossRef]; 48. Li, Y.; Li, Y.; Li, L.; Shi, X.; Wang, Z. Preparation and analysis of activated carbon from sewage sludge and corn stalk. Adv. Powder Technol. 2016, 27, 684–691. [CrossRef]; 49. Yu, F.; Zhu, X.; Jin, W.; Fan, J.; Clark, J.H.; Zhang, S. Optimized synthesis of granular fuel and granular activated carbon from sawdust hydrochar without binder. J. Clean. Prod. 2020, 276, 122711. [CrossRef]; 50. Yuan, Y.; Huang, L.; Zhang, T.C.; Ouyang, L.; Yuan, S. One-step synthesis of ZnFe2O4-loaded biochar derived from leftover rice for high-performance H2S removal. Sep. Purif. Technol. 2021, 279, 119686. [CrossRef]; 51. Cunha, M.R.; Lima, E.C.; Lima, D.R.; da Silva, R.S.; Thue, P.S.; Seliem, M.K.; Sher, F.; dos Reis, G.S.; Larsson, S.H. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis. J. Environ. Chem. Eng. 2020, 8, 104506. [CrossRef]; 52. Cazetta, A.L.; Pezoti, O.; Bedin, K.C.; Silva, T.L.; Junior, A.P.; Asefa, T.; Almeida, V.C. Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes. ACS Sustain. Chem. Eng. 2015, 4, 1058–1068. [CrossRef]; 53. Zhou, L.; Shao, Y.; Liu, J.; Ye, Z.; Zhang, H.; Ma, J.; Jia, Y.; Gao, W.; Li, Y. Preparation and Characterization of Magnetic Porous Carbon Microspheres for Removal of Methylene Blue by a Heterogeneous Fenton Reaction. ACS Appl. Mater. Interfaces 2014, 6, 7275–7285. [CrossRef] [PubMed]; 54. Lawtae, P.; Tangsathitkulchai, C. The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution. Molecules 2021, 26, 6521. [CrossRef]; 55. Lyu, W.; Yu, M.; Li, J.; Feng, J.; Yan, W. Adsorption of anionic acid red G dye on polyaniline nanofibers synthesized by FeCl3 oxidant: Unravelling the role of synthetic conditions. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 647, 129203. [CrossRef]; 56. Patra, C.; Gupta, R.; Bedadeep, D.; Narayanasamy, S. Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: A detail insight. Environ. Pollut. 2020, 266, 115102. [CrossRef]; 57. Wang, Q.; Luo, C.; Lai, Z.; Chen, S.; He, D.; Mu, J. Honeycomb-like cork activated carbon with ultra-high adsorption capacity for anionic, cationic and mixed dye: Preparation, performance and mechanism. Bioresour. Technol. 2022, 357, 127363. [CrossRef]; 58. Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [CrossRef]; 59. ¸Senol, Z.M.; Gürsoy, N.; ¸Sim¸sek, S.; Özer, A.; Karaku¸s, N. Removal of food dyes from aqueous solution by chitosan-vermiculite beads. Int. J. Biol. Macromol. 2020, 148, 635–646. [CrossRef]; 60. Mittal, A. Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater. J. Hazard. Mater. 2006, 128, 233–239. [CrossRef]; 61. Arabkhani, P.; Javadian, H.; Asfaram, A.; Sadeghfar, F.; Sadegh, F. Synthesis of magnetic tungsten disulfide/carbon nanotubes nanocomposite (WS2/Fe3O4/CNTs-NC) for highly efficient ultrasound-assisted rapid removal of amaranth and brilliant blue FCF hazardous dyes. J. Hazard. Mater. 2021, 420, 126644. [CrossRef] [PubMed]; 62. Gupta, V.; Mittal, A.; Krishnan, L.; Mittal, J. Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J. Colloid Interface Sci. 2006, 293, 16–26. [CrossRef] [PubMed]; 63. Hernández-Hernández, K.A.; Solache-Ríos, M.; Díaz-Nava, M.C. Removal of Brilliant Blue FCF from Aqueous Solutions Using an Unmodified and Iron-Modified Bentonite and the Thermodynamic Parameters of the Process. Water Air Soil Pollut. 2013, 224, 1562. [CrossRef]; 64. Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [CrossRef]; 65. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [CrossRef]; 66. Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. [CrossRef]; 67. Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [CrossRef]; 18; 28; Nascimento, V.X.; Schnorr, C.; Lütke, S.F.; Da Silva, M.C.F.; Machado Machado, F.; Thue, P.S.; Lima, É.C.; Vieillard, J.; Silva, L.F.O.; Dotto, G.L. Adsorptive Features of Magnetic Activated Carbons Prepared by a One-Step Process towards Brilliant Blue Dye. Molecules 2023, 28, 1821. https://doi.orgTest/ 10.3390/molecules28041821; https://hdl.handle.net/11323/10383Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  4. 4
    دورية أكاديمية

    وصف الملف: application/pdf; text/html; text/xml

    العلاقة: Cultura Educación Sociedad; Abu Saa, A., Al-Emran, M. & Shaalan, K. (2019). Factors affecting students’ performance in higher education: a systematic review of predictive data mining techniques. Technology, Knowledge and Learning, 24(4), 567–598. https://doi.org/10.1007/s10758-019-09408-7Test Aina, C., Baici, E., Casalone, G. & Pastore, F. (2022). The determinants of university dropout: A review of the socio-economic literature. Socio-Economic Planning Sciences, 7, 31723–31737. https://doi.org/10.1016/j.seps.2021.101102Test Aitkin, H. & Longford, N. (1986). Statisticalmodelling issues in school effectivenessstudies (with discussion). Journal of the Royal StatisticalSolciety, Series B, 149(1), 1–4. https://doi.org/10.2307/2981882Test Bean, J. P. & Vesper, N. (1990). Quantitative approaches to grounding theory in data: Using LISREL to develop a local model and theory of student attrition. Annual Meeting of the American Educational Research Association. Bills, D. B., Di Stasio, V. & Gërxhani, K. (2017). The demand side of hiring: Employers in the labor market. Annual Review of Sociology, 43, 291–310. https://doi.org/10.1146/annurev-soc-081715-074255Test Brandt, N. D., Lechner, C. M., Tetzner, J. & Rammstedt, B. (2020). Personality, cognitive ability, and academic performance: Differential associations across school subjects and school tracks. Journal of Personality, 88(2), 249–265. https://doi.org/10.1111/jopy.12482Test Castaño, E., Gallón, S., Gómez, K. y Vásquez, J. (2006). Análisis de los factores asociados a la deserción y graduación estudiantil universitaria. Lecturas de Economia, (65), 11–35. https://doi.org/10.17533/udea.le.n65a2639Test Chan, C. K. Y. & Lee, K. K. W. (2021). Reflection literacy: A multilevel perspective on the challenges of using reflections in higher education through a comprehensive literature review. Educational Research Review, 32, 1–18. https://doi.org/10.1016/j.edurev.2020.100376Test Core Team, R. (2014). R: A language and environment for statistical computing [Versión 0.16]. R Foundation for Statistical Computing. http://www.R-project.orgTest/ De la Rosa, B. (1978). Notas para una sociología de la función docente. Bordón. Revista de Pedagogía, 224, 285–306. https://recyt.fecyt.es/index.php/BORDON/indexTest Dias, J. (2007). Acreditación de la educación superior en América Latina y el Caribe. En VV.AA., Informe: La educación superior en el mundo 2007: Acreditación para la garantía de la calidad: ¿Qué está en juego? [pp. 282–295]. Mundi Prensa Libros. http://hdl.handle.net/2099/7538Test Ding, Y., Laux, J., Salyers, K. & Kozelka, S. (2017). Personality and Graduate Academic Performance Among Counselor Education and School Psychology Students. School Psychology Forum, 11(3), 105–122. https://www.nasponline.org/publications/periodicals/spf/volume-11/volume-11-issue-3Test-(fall-2017)/personality-and-graduate-academic-performance-among-counselor-education-and-school-psychology-students DiPrete, T. A. & Buchmann, C. (2013). The rise of women: The growing gender gap in education and what it means for American schools. Russell Sage Foundation. DiPrete, T. A. & Jennings, J. L. (2012). Social and behavioral skills and the gender gap in early educational achievement. Social Science Research, 41(1), 1–15. https://doi.org/10.1016/j.ssresearch.2011.09.001Test Edel, R. (2003). El rendimiento académico: concepto, investigación y desarrollo. REICE. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 1(2), 1–16. https://doi.org/10.15366/reice2003.1.2.007Test Estévez, I., Rodríguez-Llorente, C., Piñeiro, I., González-Suárez, R. & Valle, A. (2021). School engagement, academic achievement, and self-regulated learning. Sustainabilit­y, 13(6), 1–15. https://doi.org/10.3390/su13063011Test Ferrão, M. & Almeida, L. (2019). Differential effect of university entrance score on first-year students’ academic performance in Portugal. Assessment & Evaluation in Higher Education, 44(4), 610–622. https://doi.org/10.1080/02602938.2018.1525602Test Friesel, A. (2010, 14-16 April). Retaining electronic engineering students by project-and team-work from the first semester [Conference]. IEEE EDUCON 2010 Conference, Madrid, Spain. https://doi.org/10.1109/EDUCON.2010.5492372Test Gómez, C. (2018). Objetivos de Desarrollo Sostenible (ODS): una revisión crítica. Papeles de Relaciones Ecosociales y Cambio Global, 140, 107–118. https://www.cvongd.org/ficheros/documentos/ods_revision_critica_carlos_gomez_gil.pdfTest Gutiérrez-Monsalve, J. A., Garzón, J., Gonzalez-Gómez, D. & Segura-Cardona, A. M. (2023). Factors related to academic performance among engineering students: a descriptive correlational research study. DYNA, 90(227), 35–44. http://dx.doi.org/10.15446/dyna.v90n227.107150Test Gutiérrez-Monsalve, J. A., Garzón, J. y Segura-Cardona, A. M. (2021). Factores asociados al rendimiento académico en estudiantes universitarios. Formación Universitaria, 14(1), 13–24. http://dx.doi.org/10.4067/S0718-50062021000100013Test Iregui, A. M., Melo, L. y Ramos, J. (2007). Análisis de eficiencia de la educación en Colombia. Revista de Economía del Rosario, 10(1), 21–41. https://revistas.urosario.edu.co/index.php/economia/article/view/1113Test Johnson, S. M., Kraft, M. A. & Papay, J. P. (2012). How context matters in high-need schools: The effects of teachers’ working conditions on their professional satisfaction and their students’ achievement. Teachers College Record, 114(10), 1–39. https://doi.org/10.1177/016146811211401004Test Kronberger, N. & Horwath, I. (2013). The Ironic Costs of Performing Well: Grades Differentially Predict Male and Female Dropout From Engineering. Basic and Applied Social Psychology, 35(6), 534–546. https://doi.org/10.1080/01973533.2013.840629Test Kumar, S., Agarwal, M. & Agarwal, N. (2021). Defining and measuring academic performance of Hei students-a critical review. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), 3091–3105. https://turcomat.org/index.php/turkbilmat/article/view/6952Test Lam, K. K. L. & Zhou, M. (2019). Examining the relationship between grit and academic achievement within K-12 and higher education: A systematic review. Psychology in the Schools, 56(10), 1654–1686. https://doi.org/10.1002/pits.22302Test Latiesa, M. (1992). La deserción universitaria: Desarrollo de la escolaridad en la enseñanza superior: éxitos y fracasos [Vol. 124]. CIS. Lin, L. & Zhang, X. (2020). How to Apply Statistical Software in Doing Multilevel Modeling: A Comparative Study Perspective. Journal of Physics: Conference Series, 1631(1), 1–7. https://doi.org/10.1088/1742-6596/1631/1/012159Test López-Pernas, S., Gordillo, A., Barra, E. & Quemada, J. (2019). Examining the use of an educational escape room for teaching programming in a higher education setting. IEEE Access, 7, 31723–31737. http://dx.doi.org/10.1109/ACCESS.2019.2902976Test Lord, S. M., Long, R. A., Layton, R. A., Orr, M. K., Ohland, M. W. & Brawner, C. E. (2022, 08-11 October). Academic Outcomes of International Students in Chemical, Civil, Electrical, Industrial, and Mechanical Engineering in the USA [Conference]. 2022 IEEE Frontiers in Education Conference (FIE), Uppsala, Sweden. https://doi.org/10.1109/FIE56618.2022.9962437Test Martinez, F. & Chaparro, A. A. (2017). Data-mining techniques in detecting factors linked to academic achievement. School Effectiveness and School Improvement, 28(1), 39–55. https://doi.org/10.1080/09243453.2016.1235591Test McPherson, S. (2019). Part-time clinical nursing faculty needs: An integrated review. Journal of Nursing Education, 58(4), 201–206. https://doi.org/10.3928/01484834-20190321-03Test Moreira, G., Passeri, S., Velho, P. E., Ferraresi, F., Appenzeller, S. & Amaral, E. (2019). The academic performance of scholarship students during medical school. Revista Brasileira de Educação Médica, 43(3), 163–169. http://dx.doi.org/10.1590/1981-52712015v43n3rb20180180Test Mthimunye, K. & Daniels, F. M. (2019). Predictors of academic performance, success and retention amongst undergraduate nursing students: A systematic review. South African Journal of Higher Education, 33(1), 200–220. http://dx.doi.org/10.20853/33-1-2631Test Muñoz, L., Huamán, L. y Vilchez, O. (2023). Sistematización de estrategias de acompañamiento y monitoreo del desempeño académico de estudiantes universitarios de primer año. Spirat, 1(1), 27–38. https://doi.org/10.20453/spirat.v1i1.4322Test ONU. (2015). La Agenda para el Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/development-agendaTest/ ONU. FAO. (2019). El estado de la seguridad alimentaria y la nutrición en el mundo 2019: Protegerse frente a la desaceleración y el debilitamiento de la economía. FAO; FIDA; OMS; PMA; UNICEF. https://doi.org/10.4060/CA5162ESTest Oseguera, L. & Rhee, B. S. (2009). The influence of institutional retention climates on student persistence to degree completion: A multilevel approach. Research in Higher Education, 50(6), 546–569. https://doi.org/10.1007/s11162-009-9134-yTest Page, M., Bueno, M. J., Calleja, J. A., Cerdán, J., Echeverría, M. J., García, C., Gaviria, J. L., Gómez, C., Jiménez, S. C., López, B., Martín-Javato, L., Mínguez, A., Sánchez, A. y Trillo, C. (1990). Hacia un modelo causal del rendimiento académico. Cide. Palomino, J. M., Cáceres, M. del P., Aznar, I. & Lara, F. (2023). Evaluation of pedagogical leadership through the Vanderbilt Assessment of Leadership in Education (VAL-ED). Adaptation to the context of Higher Education in Spain. Cogent Social Sciences, 9(2), 1–17. http://dx.doi.org/10.1080/23311886.2023.2243720Test Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., Balkissoon, K., Wuertz, D., Christidis, A. A., Martin, R. D., Zhou, Z. & Shea, J. M. (2014). PerformanceAnalytics: Econometric tools for performance and risk analysis. https://cran.r-project.org/web/packages/PerformanceAnalytics/index.htmlTest Qureshi, M. A., Khaskheli, A., Qureshi, J. A., Raza, S. A. & Yousufi, S. Q. (2023). Factor­s affecting students’ learning performance through collaborative learning and engagemen­t. Interactive Learning Environments, 31(4), 2371–2391. https://doi.org/10.1080/10494820.2021.1884886Test Ramírez, C. (2014). Factores asociados al desempeño académico según nivel de formación pregrado y género de los estudiantes de educación superior Colombia. Revista Colombiana de Educación, (66), 203–224. https://doi.org/10.17227/01203916.66rce201.222Test Reino de España. MICIN. (2018). Las Cifras de la Educación en España : Estadísticas e Indicadores. Subdirección General de Estadística y Estudios del Ministerio de Educación y Formación Profesional. https://cpage.mpr.gob.es/producto/las-cifras-de-la-educacion-en-espana-estadisticas-e-indicadores-15Test/ República de Colombia. MEN. (2022). SPADIES - Sistema para la Prevención de la Deserción de la Educación Superior. https://www.mineducacion.gov.co/sistemasdeinformacion/1735/w3-article-363411.html?_noredirectTest= República de Colombia. MEN. (s.f.). SNIES. https://snies.mineducacion.gov.co/portalTest/ Rodrigo-Cano, D., Picó, M. J. & Dimuro, G. (2019). Los Objetivos de Desarrollo Sostenible como marco para la acción y la intervención social y ambiental. RETOS. Revista de Ciencias de La Administración y Economía, 9(17), 25–36. https://doi.org/10.17163/ret.n17.2019.02Test Rosin, H. (2012). The end of men: And the rise of women. Penguin. Şahin, M. & Aybek, E. (2019). Jamovi: an easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education, 6(4), 670–692. http://dx.doi.org/10.21449/ijate.661803Test Seibt, R. & Kreuzfeld, S. (2021). Influence of work-related and personal characteristics on the burnout risk among full-and part-time teachers. International Journal of Environmental Research and Public Health, 18(4), 1–17. https://doi.org/10.3390/ijerph18041535Test Singh, S. & Ryhal, P. C. (2021). The Influence of Teachers’ Emotional Intelligence on Academic Performance With Mediating Effect of Job Satisfaction. Journal of Education, 203(3), 499–507. https://doi.org/10.1177/00220574211032314Test Smith, D. G. (2020). Diversity’s promise for higher education: Making it work. JHU Press. Snyder, T. D., De Brey, C. & Dillow, S. A. (2019). Digest of Education Statistics 2017 [NCES 2018-070, 53rd Ed.]. Instituto of Education Sciences; National Center for Education Statistics. https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2018070Test Souza-Martins, D. y Figueroa-Ángel, M. X. (2023). Factores psicológicos de los estudiantes universitarios y calidad de vida: Una revisión sistemática prepandemia. Interdisciplinaria, 40(1), 24–41. https://doi.org/10.16888/interd.2023.40.1.2Test Spady, W. G. (1970). Dropouts from higher education: An interdisciplinary review and synthesis. Interchange, 1(1), 64–85. https://doi.org/10.1007/BF02214313Test Sulaiman, A. & Mohezar, S. (2006). Student Success Factors: Identifying Key Predictor­s. Journal of Education for Business, 81(6), 328–333. https://doi.org/10.3200/JOEB.81.6.328-333Test Sulaiman, M. (2016). Effects of Academic and Nonacademic Factors on Undergraduate Electronic Engineering Program Retention [Thesis Dissertations, Walden Universit­y]. Scholarworks. https://scholarworks.waldenu.edu/dissertationsTest/ Szklo, M. y Nieto, F. J. (2003). Epidemiología intermedia: conceptos y aplicaciones. Díaz de Santos. Tyre, P. (2008). The trouble with boys: A surprising report card on our sons, their problems at school, and what parents and educators must do. Harmony. Walpole, R., Myers, R. & Myers, S. (1999). Probabilidad y estadística para ingenieros [6 Ed.]. Pearson Educación. Williams, J. M., Bryan, J., Morrison, S. & Scott, T. R. (2017). Protective factors and processes contributing to the academic success of students living in poverty: Implications for counselors. Journal of Multicultural Counseling and Development, 45(3), 183–200. https://doi.org/10.1002/jmcd.12073Test Wong, W. H. & Chapman, E. (2023). Student satisfaction and interaction in higher educatio­n. Higher Education, 85(5), 957–978. https://doi.org/10.1007/s10734-022-00874-0Test Zimmerman, B. J., Bandura, A. & Martinez-Pons, M. (1992). Self-motivation for academic attainment: The role of self-efficacy beliefs and personal goal setting. American Educational Research Journal, 29(3), 663–676. https://doi.org/10.3102/00028312029003663Test; e03414663; 15; https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5318Test; https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5319Test; https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5320Test; Núm. 1 , Año 2024 : Cultura Educación y Sociedad; https://hdl.handle.net/11323/11406Test; https://doi.org/10.17981/cultedusoc.15.1.2024.4663Test

  5. 5
    دورية أكاديمية

    وصف الملف: 16 páginas; application/pdf

    العلاقة: Computers, Materials and Continua; [1] S. Sadhana, S. Pandiarajan, E. Sivaraman and D. Daniel, “AI-based power screening solution for SARSCOV2 infection: A sociodemographic survey and COVID-19 cough detector,”Procedia Computer Science, vol. 194, no. 9, pp. 255–271, 2021.; [2] E. Mahase, “Coronavirus: COVID-19 has killed more people than SARS and MERS combined, despite lower case fatality rate,” BMJ, vol. 368, pp. m641, 2020.; [3] U. Rani and R. K. Dhir, “Platform work and the COVID-19 pandemic,” The Indian Journal of Labour Economics, vol. 63, no. S1, pp. 163–171, 2020.; [4] M. Ahmadi, A. Sharifi, S. Dorosti, S. J. Ghoushchi and N. Ghanbari, “Investigation of effective climatology parameters on COVID-19 outbreak in Iran,” Science of the Total Environment, vol. 729, no. 8, pp. 138705, 2020.; [5] Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying et al., “Sensitivity of chest CT for COVID-19: Comparison to RT-PCR,” Radiology, vol. 296, no. 2, pp. E115–E117, 2020.; [6] M. N. Ikeda, K. Imai, S. Tabata, K. Miyoshi, N. Murahara et al., “Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loopmediated isothermal amplification, and a rapid antigen test to diagnose COVID-19,” Journal of Clinical Microbiology, vol. 58, no. 9, pp. e01438-20, 2020.; [7] M. L. Bastos, G. Tavaziva, S. K. Abidi, J. R. Campbell, L. P. Haraoui et al., “Diagnostic accuracy of serological tests for COVID-19: Systematic review and meta-analysis,” BMJ, vol. 370, pp. 1–13, 2020.; [8] M. Rahimzadeh, A. Attar and S. M. Sakhaei, “A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset,”Biomedical Signal Processing and Control, vol. 68, no. 1, pp. 102588, 2021.; [9] D. Li, D. Wang, J. Dong, N. Wang, H. Huang et al., “False-negative results of real-time reverse-transcriptase polymerase chain reaction for severe acute respiratory syndrome coronavirus 2: Role of deep-learning-based CT diagnosis and insights from two cases,” Korean Journal of Radiology, vol. 21, no. 4, pp. 505, 2020.; [10] F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang et al., “Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19,” IEEE Reviews in Biomedical Engineering, vol. 14, pp. 4–15, 2020.; [11] G. Wang, X. Liu, C. Li, Z. Xu, J. Ruan et al., “A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2653–2663, 2020.; [12] A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, A. Mohammadi et al., “Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks,” Computers in Biology and Medicine, vol. 121, no. 10229, pp. 103795, 2020.; [13] L. Zhou, Z. Li, J. Zhou, H. Li, Y. Chen et al., “A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2638–2652, 2020.; [14] R. Ranjbarzadeh and S. B. Saadi, “Automated liver and tumor segmentation based on concave and convex points using fuzzy C-means and mean shift clustering,” Measurement, vol. 150, no. 2, pp. 107086, 2020.; [15] X. Ouyang, J. Huo, L. Xia, F. Shan, J. Liu et al., “Dual-sampling attention network for diagnosis of COVID19 from community acquired pneumonia,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2595– 2605, 2020.; [16] V. Rajinikanth, N. Dey, A. N. J. Raj, A. E. Hassanien, K. C. Santosh et al., “Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images,” arXiv preprint arXiv:2004.03431, 2004.; [17] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, G. J. Soufi et al., “Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning,”Medical Image Analysis, vol. 65, no. 12, pp. 101794, 2020.; [18] D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen et al., “Inf-Net: Automatic COVID-19 lung infection segmentation from CT images,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2626–2637, 2020.; [19] X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng et al., “A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2615–2625, 2020.; [20] M. Barstugan, U. Ozkaya and S. Ozturk, “Coronavirus (COVID-19) classification using CT images by machine learning methods,” arXiv preprint arXiv:2003.09424, 2020.; [21] H. Panwar, P. K. Gupta, M. K. Siddiqui, R. M. Menendez, V. Singh et al., “Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet,” Chaos, Solitons & Fractals, vol. 128, no. 3, pp. 109944, 2020.; [22] S. Toraman, T. B. Alakus and I. Turkoglu, “Convolutional CapsNet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks,” Chaos, Solitons & Fractals, vol. 140, no. 18, pp. 110122, 2020.; [23] M. Nour, Z. Cömert and K. Polat, “A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization,”Applied Soft Computing, vol. 97, no. Part A, pp. 106580, 2020.; [24] R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, D. Gupta, O. Castillo et al., “Unsupervised deep learning based variational autoencoder model for COVID-19 diagnosis and classification,” Pattern Recognition Letters, vol. 151, no. 151, pp. 267–274, 2021.; [25] S. Ahuja, B. K. Panigrahi, N. Dey, V. Rajinikanth, T. K. Gandhi et al., “Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices,” Applied Intelligence, vol. 51, no. 1, pp. 571– 585, 2021.; [26] T. Kaur, T. K. Gandhi and B. K. Panigrahi, “Automated diagnosis of COVID-19 using deep features and parameter free BAT optimization,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 9, pp. 1–9, 2021.; [27] K. K. Singh and A. Singh, “Diagnosis of COVID-19 from chest X-ray images using wavelets-based depthwise convolution network,” Big Data Mining and Analytics, vol. 4, no. 2, pp. 84–93, 2021.; [28] A. Shamsi, H. Asgharnezhad, S. S. Jokandan, A. Khosravi, P. M. Kebria et al., “An uncertainty-aware transfer learning-based framework for COVID-19 diagnosis,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 4, pp. 1408–1417, 2021.; [29] Y. H. Wu, S. H. Gao, J. Mei, J. Xu, D. P. Fan et al., “JCS: An explainable COVID-19 diagnosis system by joint classification and segmentation,” IEEE Transactions on Image Processing, vol. 30, pp. 3113–3126, 2021.; [30] M. Ragab, S. Alshehri, N. A. Alhakamy, W. Alsaggaf, H. A. Alhadrami et al., “Machine learning with quantum seagull optimization model for COVID-19 chest X-ray image classification,” Journal of Healthcare Engineering, vol. 2022, no. 1, pp. 1–13, 2022.; [31] K. Shankar and E. Perumal, “A novel hand-crafted with deep learning features based fusion model for COVID-19 diagnosis and classification using chest X-ray images,” Complex & Intelligent Systems, vol. 7, no. 3, pp. 1277–1293, 2020.; [32] D. Nandan, J. Kanungo and A. Mahajan, “An error-efficient Gaussian filter for image processing by using the expanded operand decomposition logarithm multiplication,” Journal of Ambient Intelligence and Humanized Computing, 2018. https://doi.org/10.1007/s12652-018-0933-xTest; [33] K. Shankar, E. Perumal, M. Elhoseny, F. Taher, B. B. Gupta et al., “Synergic deep learning for smart health diagnosis of COVID-19 for connected living and smart cities,” ACM Transactions on Internet Technology, vol. 22, no. 3, pp. 1–14, 2022.; [34] K. Shankar, E. Perumal, V. G. Díaz, P. Tiwari, D. Gupta et al., “An optimal cascaded recurrent neural network for intelligent COVID-19 detection using chest X-ray images,” Applied Soft Computing, vol. 113, no. Part A, pp. 1–13, 2021.; [35] C. S. S. Anupama, M. Sivaram, E. L. Lydia, D. Gupta and K. Shankar, “Synergic deep learning model-based automated detection and classification of brain intracranial hemorrhage images in wearable networks,” Personal and Ubiquitous Computing, 2020. https://doi.org/10.1007/s00779-020-01492-2Test; [36] H. Jia, X. Peng and C. Lang, “Remora optimization algorithm,” Expert Systems with Applications, vol. 185, no. 2, pp. 115665, 2021.; 5270; 5255; 75; J. Escorcia-Gutierrez, M. Gamarra, R. Soto-Diaz, S. Alsafari, A. Yafoz et al., "Optimal synergic deep learning for covid-19 classification using chest x-ray images," Computers, Materials & Continua, vol. 75, no.3, pp. 5255–5270, 2023. https://doi.org/10.32604/cmc.2023.033731Test; https://hdl.handle.net/11323/10601Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  6. 6
    دورية أكاديمية

    وصف الملف: 10 páginas; application/pdf

    العلاقة: International Journal of Geometric Methods in Modern Physics; [1] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ-derivations on ∗ C -algebras, Proc. Am. Math. Soc. 134 (2006), no. 11, 3319–3327.; [2] C. Park, J. Lee, and X. Zhang, Additive s-functional inequality and hom-derivations in Banach algebras, J. Fixed Point Theory Appl. 21 (2019), Paper No. 18, DOI: https://doi.org/10.1007/s11784-018-0652-0Test.; [3] M. Dehghanian, C. Park, and Y. Sayyari, On the stability of hom-der on Banach algebras (preprint).; [4] A. Kheawborisuk, S. Paokanta, and J. Senasukh, Ulam stability of hom-ders in fuzzy Banach algebars, C. Park, AIMS Math. 7 (2022), no. 9, 16556–16568, DOI: https://doi.org/10.3934/math.2022907Test.; [5] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publications, New York, 1960.; [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.; [7] M. Dehghanian and S. M. S. Modarres, Ternary γ-homomorphisms and ternary γ-derivations on ternary semigroups, J. Inequal. Appl. 2012 (2012), Paper No. 34, DOI: https://doi.org/10.1186/1029-242X-2012-34Test.; [8] M. Dehghanian, S. M. S. Modarres, C. Park, and D. Shin, ∗ C -Ternary 3-derivations on ∗ C -ternary algebras, J. Inequal. Appl. 2013 (2013), Paper No. 124, DOI: https://doi.org/10.1186/1029-242X-2013-124Test.; [9] M. Dehghanian and C. Park, ∗ C -Ternary 3-homomorphisms on ∗ C -ternary algebras, Results Math. 66 (2014), 385–404, DOI: https://doi.org/10.1007/s00025-014-0383-5Test.; [10] M. Dehghanian, Y. Sayyari, and C. Park, Hadamard homomorphisms and Hadamard derivations on Banach algebras, Miskolc Math. Notes (in press).; [11] C. Park, J. M. Rassias, A. Bodaghi, and S. Kim, Approximate homomorphisms from ternary semigroups to modular spaces, Rev. R. Acad. Cienc. Exactas Fiiis. Nat. Ser. A Mat. RACSAM 113 (2019), no. 3, 2175–2188, DOI: https://doi.org/10.1007Test/ s13398-018-0608-7.; [12] C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, and A. Najati, On a functional equation that has the quadraticmultiplicative property, Open Math. 18 (2020), 837–845, DOI: https://doi.org/10.1515/math-2020-0032Test.; [13] A. Thanyacharoen and W. Sintunavarat, The new investigation of the stability of mixed type additive-quartic functional equations in non-Archimdean spaces, Demonstr. Math. 53 (2020), 174–192, DOI: https://doi.org/10.1515/dema2020-0009Test.; [14] A. Thanyacharoen and W. Sintunavarat, On new stability results for composite functional equations in quasi-β-normed spaces, Demonstr. Math. 54 (2021), 68–84, DOI: https://doi.org/10.1515/dema-2021-0002Test.; [15] Y. Sayyari, M. Dehghanian, C. Park, and J. Lee, Stability of hyper homomorphisms and hyper derivations in complex Banach algebras, AIMS Math. 7 (2022), no. 6, 10700–10710, DOI: https://doi.org/10.3934/math.2022597Test.; [16] I. Hwang and C. Park, Bihom derivations in Banach algebras, J. Fixed Point Theory Appl. 21 (2019), no. 3, Paper No. 81, DOI: https://doi.org/10.1007/s11784-019-0722-xTest.; [17] G. Lu and C. Park, Hyers-Ulam stability of general Jensen-type mappings in Banach algebras, Results Math. 66 (2014), 87–98, DOI: https://doi.org/10.1007/s00025-014-0365-7Test.; [18] C. Park, An additive (α, β)-functional equation and linear mappings in Banach spaces, J. Fixed Point Theory Appl. 18 (2016), 495–504, DOI: https://doi.org/10.1007/s11784-016-0283-2Test.; [19] C. Park, The stability of an additive (ρ ρ, ) 1 2 -functional inequality in Banach spaces, J. Math. Inequal. 13 (2019), 95–104, DOI: https://doi.org/10.7153/jmi-2019-13-07Test.; [20] J. Brzdȩk, L. Cădariu, and K. Ciepliński, Fixed point theory and the Ulam stability, J. Funct. Spaces 2014 (2014), Article ID 829419, DOI: https://doi.org/10.1155/2014/829419Test.; [21] J. Brzdȩk, E. Karapinar, and A. Petruşel, A fixed point theorem and the Ulam stability in generalized dq-metric spaces, J. Math. Anal. Appl. 467 (2018), no. 1, 501–520, DOI: https://doi.org/10.1016/j.jmaa.2018.07.022Test.; [22] D. Popa, G. Pugna, and I. Rasa, On Ulam stability of the second order linear differential equation, Adv. Theory Nonlinear Anal. Appl. 2 (2018), no. 2, 106–112.; [23] A. Salim, M. Benchohra, E. Karapinar, and J. E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations, Adv. Difference Equations 2020 (2020), Paper No. 601, DOI: https://doi.org/10.1186Test/ s13662-020-03063-4.; [24] A. Lachouri and A. Ardjouni, The existence and Ulam-Hyers stability results for generalized Hilfer fractional integrodifferential equations with nonlocal integral boundary conditions, Adv. Theory Nonlinear Anal. Appl. 6 (2022), no. 1, 101–117.; [25] H. Mohamed, Sequential fractional pantograph differential equations with nonlocal boundary conditions: Uniqueness and Ulam-Hyers-Rassias stability, Results Nonlinear Anal. 5 (2022), no. 1, 29–41, DOI: https://doi.org/10.53006/rna.928654Test.; [26] R. Atmania, Existence and stability results for a nonlinear implicit fractional differential equation with a discrete delay, Adv. Theory Nonlinear Anal. Appl. 6 (2022), no. 2, 246–257.; [27] E. Karapinar, H. D. Binh, N. H. Luc, and N. H. Can, On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Adv. Difference Equations 2021 (2021), Paper No. 70, DOI: https://doi.org/10.1186/s13662Test- 021-03232-z.; [28] J. E. Lazreg, S. Abbas, M. Benchohra, and E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces, Open Math. 19 (2021), 363–372, DOI: https://doi.org/10.1515/math-2021-0040Test.; [29] R. S. Adigüzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci. (in press), DOI: https://doi.org/10.1002/mma.6652Test.; [30] R. S. Adigüzel, U. Aksoy, E. Karapinar, and I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), Paper No. 155, DOI: https://doi.org/10.1007/s13398-021-01095-3Test.; [31] R. S. Adigüzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math. 20 (2021), 313–333.; [32] H. Afshari and E. Karapinar, A solution of the fractional differential equations in the setting of b-metric space, Carpathian Math. Publ. 13 (2021), 764–774, DOI: https://doi.org/10.15330/cmp.13.3.764-774Test.; [33] H. Afshari, H. Shojaat, and M. S. Moradi, Existence of the positive solutions for a tripled system of fractional differential equations via integral boundary conditions, Results Nonlinear Anal. 4 (2021), Article ID 186193, DOI: https://doi.org/10Test. 53006/rna.938851.; [34] M. Asadi, B. Moeini, A. Mukheimer, and H. Aydi, Complex valued M-metric spaces and related fixed point results via complex C-class functions, J. Inequal. Spec. Funct. 10 (2019), no. 1, 101–110.; [35] B. Moeini, M. Asadi, H. Aydi, and M. S. Noorani, ∗ C -Algebra-valued M-metric spaces and some related fixed point results, Ital. J. Pure Appl. Math. 41 (2019), 708–723.; [36] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc. 74 (1968), 305–309.; [37] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567–572, DOI: https://doi.org/10.1016/j.jmaa.2008.01.100Test.; [38] C. Park, Homomorphisms between Poisson ∗ JC -algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97, DOI: https://doi.org/10Test. 1007/s00574-005-0029-z.; 10; 56; Paokanta, Siriluk, Dehghanian, Mehdi, Park, Choonkil and Sayyari, Yamin. "A system of additive functional equations in complex Banach algebras" Demonstratio Mathematica, vol. 56, no. 1, 2023, pp. 20220165. https://doi.org/10.1515/dema-2022-0165Test; https://hdl.handle.net/11323/10522Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  7. 7
    دورية أكاديمية

    مصطلحات موضوعية: Genetics, Computational bioinformatics, Algorithms

    وصف الملف: 39 páginas; application/pdf

    العلاقة: iScience; 1 M. Ye, W. Wang, C. Yao, R. Fan, P. Wang Gene selection method for microarray data classification using particle swarm optimization and neighborhood rough set Curr. Bioinf., 14 (2019), pp. 422-431, 10.2174/1574893614666190204150918; 2 S. Wang, W. Aorigele Kong, W. Kong, W. Zeng, X. Hong Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data BioMed Res. Int., 2016 (2016), p. 9721713, 10.1155/2016/9721713; 3 S. Jana, N. Balakrishnan, D. von Rosen, J.S. Hamid High dimensional extension of the growth curve model and its application in genetics Stat. Methods Appt., 26 (2016), pp. 273-292, 10.1007/s10260-016-0369-4; 4 K. Uthayan A novel microarray gene selection and classification using intelligent dynamic grey wolf optimization Genetika, 51 (2019), pp. 805-828, 10.2298/GENSR1903805U; 5 A.K. Shukla, P. Singh, M. Vardhan Gene selection for cancer types classification using novel hybrid metaheuristics approach Swarm Evol. Comput., 54 (2020), p. 100661, 10.1016/j.swevo.2020.100661; 6 A. Sharma, R. Rani C-HMOSHSSA: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods Comput. Methods Progr. Biomed., 178 (2019), pp. 219-235, 10.1016/j.cmpb.2019.06.029; 7 M.S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, Z. Ibrahim An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes Algorithm Mol. Biol., 8 (2013), p. 15, 10.1186/1748-7188-8-15; 8 A.M. Mabu, R. Prasad, R. Yadav Gene expression dataset classification using artificial neural network and clustering-based feature selection Int. J. Swarm Intell. Res. (IJSIR), 11 (2020), pp. 65-86, 10.4018/IJSIR.2020010104; 9 C. Jin, S.W. Jin Gene selection approach based on improved swarm intelligent optimisation algorithm for tumour classification IET Syst. Biol., 10 (2016), pp. 107-115, 10.1049/iet-syb.2015.0064; 10 A. Dabba, A. Tari, S. Meftali, R. Mokhtari Gene selection and classification of microarray data method based on mutual information and moth flame algorithm Expert Syst. Appl., 166 (2021), p. 114012, 10.1016/j.eswa.2020.114012; 11 A. Dabba, A. Tari, S. Meftali Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data J. Ambient Intell. Hum. Comput., 12 (2021), pp. 2731-2750, 10.1007/s12652-020-02434-9; 12 X. Xu, J. Li, H.-l. Chen Enhanced Support Vector Machine Using Parallel Particle Swarm Optimization IEEE (2014), pp. 41-46; 13 H. Alshamlan, G. Badr, Y. Alohali mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling BioMed Res. Int., 2015 (2015), p. 604910, 10.1155/2015/604910; 14 H.M. Alshamlan, G.H. Badr, Y.A. Alohali Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification Comput. Biol. Chem., 56 (2015), pp. 49-60, 10.1016/j.compbiolchem.2015.03.001; 15 H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J.F. Aldana-Montes Automatic frequency-based feature selection using discrete weighted evolution strategy Appl. Soft Comput., 130 (2022), p. 109699, 10.1016/j.asoc.2022.109699; 16 C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, W.-Y. Huang Dual-graph attention convolution network for 3-D point cloud classification IEEE Transact. Neural Networks Learn. Syst. (2022), pp. 1-13; 17 Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng 2D/3D multimode medical image alignment based on spatial histograms Appl. Sci., 12 (2022), p. 8261; 18 M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani Integration of multi-objective PSO based feature selection and node centrality for medical datasets Genomics, 112 (2020), pp. 4370-4384, 10.1016/j.ygeno.2020.07.027; 19 O. Tarkhaneh, T.T. Nguyen, S. Mazaheri A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm Inf. Sci., 565 (2021), pp. 278-305, 10.1016/j.ins.2021.02.061; 20 A. Jiménez-Cordero, J.M. Morales, S. Pineda A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification Eur. J. Oper. Res., 293 (2021), pp. 24-35, 10.1016/j.ejor.2020.12.009; 21 S. Abasabadi, H. Nematzadeh, H. Motameni, E. Akbari Automatic ensemble feature selection using fast non-dominated sorting Inf. Syst., 100 (2021), p. 101760, 10.1016/j.is.2021.101760; 22 Z. Sadeghian, E. Akbari, H. Nematzadeh A hybrid feature selection method based on information theory and binary butterfly optimization algorithm Eng. Appl. Artif. Intell., 97 (2021), 10.1016/j.engappai.2020.104079; 23 N. Singh, P. Singh A hybrid ensemble-filter wrapper feature selection approach for medical data classification Chemometr. Intell. Lab. Syst., 217 (2021), p. 104396, 10.1016/j.chemolab.2021.104396; 24 J. Cai, J. Luo, S. Wang, S. Yang Feature selection in machine learning: a new perspective Neurocomputing, 300 (2018), pp. 70-79, 10.1016/j.neucom.2017.11.077; 25 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness J. Ambient Intell. Hum. Comput. (2022), pp. 1-17; 26 M.M. Mafarja, S. Mirjalili Hybrid Whale Optimization Algorithm with simulated annealing for feature selection Neurocomputing, 260 (2017), pp. 302-312, 10.1016/j.neucom.2017.04.053; 27 J. Too, S. Mirjalili A hyper learning binary dragonfly algorithm for feature selection: a COVID-19 case study Knowl. Base Syst., 212 (2021), 10.1016/j.knosys.2020.106553; 28 N.S. Altman An introduction to kernel and nearest-neighbor nonparametric regression Am. Statistician, 46 (1992), pp. 175-185, 10.1080/00031305.1992.10475879; 29 J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection Knowl. Base Syst., 213 (2021), p. 106684, 10.1016/j.knosys.2020.106684; 30 M. Shafipour, A. Rashno, S. Fadaei Particle distance rank feature selection by particle swarm optimization Expert Syst. Appl., 185 (2021), p. 115620, 10.1016/j.eswa.2021.115620; 31 K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao Training effective deep reinforcement learning agents for real-time life-cycle production optimization J. Petrol. Sci. Eng., 208 (2022), p. 109766; 32 X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen Multi-objective robust optimisation model for MDVRPLS in refined oil distribution Int. J. Prod. Res., 60 (2022), pp. 6772-6792; 33 J. Tian, M. Hou, H. Bian, J. Li Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems Complex & Intelligent Systems (2022), pp. 1-49; 34 F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili Henry gas solubility optimization: a novel physics-based algorithm Future Generat. Comput. Syst., 101 (2019), pp. 646-667, 10.1016/j.future.2019.07.015; 35 F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems Appl. Intell., 51 (2021), pp. 1531-1551, 10.1007/s10489-020-01893-z; 36 F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems Math. Comput. Simulat., 192 (2022), pp. 84-110, 10.1016/j.matcom.2021.08.013; 37 H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai Slime mould algorithm: a comprehensive review of recent variants and applications Int. J. Syst. Sci., 54 (2022), pp. 204-235; 38 M. Li, A. Cao, R. Wang, Z. Li, S. Li, J. Wang Slime mould algorithm: a new method for stochastic optimization BMC Plant Biol., 20 (2020), pp. 300-323; 39 I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method Expert Syst. Appl., 181 (2021), p. 115079, 10.1016/j.eswa.2021.115079; 40 J. Tu, H. Chen, M. Wang, A.H. Gandomi The colony predation algorithm J. Bionic Eng., 18 (2021), pp. 674-710, 10.1007/s42235-021-0050-y; 41 I. Ahmadianfar, A.A. Heidari, S. Noshadian, H. Chen, A.H. Gandomi INFO: an efficient optimization algorithm based on weighted mean of vectors Expert Syst. Appl., 195 (2022), p. 116516, 10.1016/j.eswa.2022.116516; 42 H. Su, D. Zhao, A. Asghar Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen RIME: a physics-based optimization Neurocomputing, 532 (2023), pp. 183-214, 10.1016/j.neucom.2023.02.010; 43 A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen Harris hawks optimization: algorithm and applications Future Generat. Comput. Syst., 97 (2019), pp. 849-872, 10.1016/j.future.2019.02.028; 44 E. Çelik A powerful variant of symbiotic organisms search algorithm for global optimization Eng. Appl. Artif. Intell., 87 (2020), p. 103294, 10.1016/j.engappai.2019.103294; 45 E. Çelik, N. Öztürk, Y. Arya Advancement of the search process of salp swarm algorithm for global optimization problems Expert Syst. Appl., 182 (2021), p. 115292, 10.1016/j.eswa.2021.115292; 46 E.H. Houssein, D. Oliva, E. Çelik, M.M. Emam, R.M. Ghoniem Boosted sooty tern optimization algorithm for global optimization and feature selection Expert Syst. Appl., 213 (2023), p. 119015, 10.1016/j.eswa.2022.119015; 47 E. Çelik IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning Knowl. Base Syst., 260 (2023), p. 110169, 10.1016/j.knosys.2022.110169; 48 Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis Neurocomputing, 430 (2021), pp. 185-212; 49 X. Wen, K. Wang, H. Li, H. Sun, H. Wang, L. Jin A two-dlstage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop Swarm Evol. Comput., 61 (2021), p. 100820, 10.1016/j.swevo.2020.100820; 50 G. Wang, E. Fan, G. Zheng, K. Li, H. Huang Research on vessel speed heading and collision detection method based on AIS data Mobile Information Systems (2022); 51 R. Dong, H. Chen, A.A. Heidari, H. Turabieh, M. Mafarja, S. Wang Boosted kernel search: framework, analysis and case studies on the economic emission dispatch problem Knowl. Base Syst., 233 (2021), p. 107529, 10.1016/j.knosys.2021.107529; 52 C. Zhao, Y. Zhou, X. Lai An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems Inf. Sci., 600 (2022), pp. 342-361, 10.1016/j.ins.2022.03.093; 53 Y. Xue, Y. Tong, F. Neri An ensemble of differential evolution and Adam for training feed-forward neural networks Inf. Sci., 608 (2022), pp. 453-471, 10.1016/j.ins.2022.06.036; 54 K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, L. Wang A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization IEEE Trans. Evol. Comput., 1 (2022), p. 1, 10.1109/TEVC.2022.3193287; 55 C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem Inf. Sci., 619 (2023), pp. 2-18, 10.1016/j.ins.2022.11.019; 56 J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, L. Wang Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization IEEE Trans. Cybern. (2022), pp. 1-14, 10.1109/TCYB.2022.3163759; 57 W. Deng, J. Xu, X.Z. Gao, H. Zhao An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), pp. 1578-1587, 10.1109/TSMC.2020.3030792; 58 Y. Liu, H. Cui, X. Xu, W. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection Neurocomputing, 20 (2022), pp. 325-362, 10.1016/j.neucom.2022.06.075; 59 Y. Xue, B. Xue, M. Zhang Self-adaptive particle swarm optimization for large-scale feature selection in classification ACM Trans. Knowl. Discov. Data, 13 (2019), pp. 1-27; 60 Y. Xue, X. Cai, F. Neri A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification Appl. Soft Comput., 127 (2022), p. 109420; 61 A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush An Improved Dragonfly Algorithm for Feature Selection Knowl. Base Syst., 203 (2020), p. 106131, 10.1016/j.knosys.2020.106131; 62 M. Tahir, A. Tubaishat, F. Al-Obeidat, B. Shah, Z. Halim, M. Waqas A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare Neural Comput. Appl., 34 (2020), pp. 11453-11474, 10.1007/s00521-020-05347-y; 63 R.A. Ibrahim, M.A. Elaziz, D. Oliva, E. Cuevas, S. Lu An opposition-based social spider optimization for feature selection Soft Comput., 23 (2019), pp. 13547-13567, 10.1007/s00500-019-03891-x; 64 M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, S. Mirjalili Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection Expert Syst. Appl., 145 (2020), p. 113122, 10.1016/j.eswa.2019.113122; 65 B. Xue, M. Zhang, W.N. Browne, X. Yao A survey on evolutionary computation approaches to feature selection IEEE Trans. Evol. Comput., 20 (2016), pp. 606-626, 10.1109/tevc.2015.2504420; 66 S. Mirjalili, A. Lewis The whale optimization algorithm Adv. Eng. Software, 95 (2016), pp. 51-67, 10.1016/j.advengsoft.2016.01.008; 67 W. Zhao, Z. Zhang, L. Wang Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications Eng. Appl. Artif. Intell., 87 (2020), p. 103300, 10.1016/j.engappai.2019.103300; 68 S. Ahmed, K.K. Ghosh, S. Mirjalili, R. Sarkar AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection Knowl. Base Syst., 228 (2021), p. 107283, 10.1016/j.knosys.2021.107283; 69 Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts Expert Syst. Appl., 177 (2021), p. 114864, 10.1016/j.eswa.2021.114864; 70 Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin, D. Allam Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer IEEE Access, 9 (2021), pp. 120774-120794, 10.1109/ACCESS.2021.3101839; 71 H. Nguyen, X.-N. Bui A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting Nat. Resour. Res., 30 (2021), pp. 3865-3880, 10.1007/s11053-021-09903-8; 72 X. Zhou, W. Gui, A.A. Heidari, Z. Cai, H. Elmannai, M. Hamdi, G. Liang, H. Chen Advanced orthogonal learning and Gaussian barebone hunger games for engineering design J. Comput. Des. Eng., 9 (2022), pp. 1699-1736, 10.1093/jcde/qwac075; 73 R. Li, X. Wu, H. Tian, N. Yu, C. Wang Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion IEEE Trans. Geosci. Rem. Sens., 60 (2022), pp. 1-20; 74 S. Chakraborty, A.K. Saha, R. Chakraborty, M. Saha, S. Nama HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization Int. J. Intell. Syst., 37 (2022), pp. 52-104, 10.1002/int.22617; 75 S. Li, X. Li, H. Chen, Y. Zhao, J. Dong A novel hybrid hunger games search algorithm with differential evolution for improving the behaviors of non-cooperative animals IEEE Access, 9 (2021), pp. 164188-164205, 10.1109/ACCESS.2021.3132617; 76 R. Liang, T. Le-Hung, T. Nguyen-Thoi Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model J. Build. Eng., 59 (2022), p. 105087, 10.1016/j.jobe.2022.105087; 77 S. Yu, A.A. Heidari, C. He, Z. Cai, M.M. Althobaiti, R.F. Mansour, G. Liang, H. Chen Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search Sol. Energy, 242 (2022), pp. 79-104, 10.1016/j.solener.2022.06.046; 78 R. Manjula Devi, M. Premkumar, P. Jangir, B. Santhosh Kumar, D. Alrowaili, K. Sooppy Nisar BHGSO: binary hunger games search optimization algorithm for feature selection problem Comput. Mater. Continua (CMC), 70 (2022), pp. 557-579, 10.32604/cmc.2022.019611; 79 Houssein, E.H., Hosney, M.E., Mohamed, W.M., Ali, A.A., and Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl. 10.1007/s00521-022-07916-9; 80 B.J. Ma, S. Liu, A.A. Heidari Multi-strategy ensemble binary hunger games search for feature selection Knowl. Base Syst., 248 (2022), p. 108787, 10.1016/j.knosys.2022.108787; 81 T. Blackwell A study of collapse in bare bones particle swarm optimization IEEE Trans. Evol. Comput., 16 (2012), pp. 354-372, 10.1109/TEVC.2011.2136347; 82 X. Chen, H. Huang, A.A. Heidari, C. Sun, Y. Lv, W. Gui, G. Liang, Z. Gu, H. Chen, C. Li, P. Chen An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images Comput. Biol. Med., 142 (2022), p. 105179, 10.1016/j.compbiomed.2021.105179; 83 W. Cao, X. Wang, Z. Ming, J. Gao A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287, 10.1016/j.neucom.2017.08.040; 84 W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, X. Wang Bidirectional stochastic configuration network for regression problems Neural Network., 140 (2021), pp. 237-246, 10.1016/j.neunet.2021.03.016; 85 S. Jadhav, H. He, K. Jenkins Information gain directed genetic algorithm wrapper feature selection for credit rating Appl. Soft Comput., 69 (2018), pp. 541-553, 10.1016/j.asoc.2018.04.033; 86 F. Tempola, R. Rosihan, R. Adawiyah Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar IOP Conf. Ser. Mater. Sci. Eng., 1125 (2021); 87 H.K. Jeon, C.S. Yang Enhancement of ship type classification from a combination of CNN and KNN Electronics, 10 (2021), p. 1169; 88 F. Zhu, X. Jia-kun, W. Zhong-yu, L. Pei-Chen, Q. Shu-jun, H. Lei Image classification method based on improved KNN algorithm J. Phys. Conf. (2021); 89 M.H. Nadimi-Shahraki, H. Zamani, S. Mirjalili Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study Comput. Biol. Med., 148 (2022), p. 105858, 10.1016/j.compbiomed.2022.105858; 90 J. Yedukondalu, L.D. Sharma Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection Biomed. Signal Process Control, 79 (2022), p. 104006, 10.1016/j.bspc.2022.104006; 91 E. Emary, H.M. Zawbaa, A.E. Hassanien Binary grey wolf optimization approaches for feature selection Neurocomputing, 172 (2016), pp. 371-381, 10.1016/j.neucom.2015.06.083; 92 J. Hu, W. Gui, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection Knowl. Base Syst., 237 (2022), p. 107761, 10.1016/j.knosys.2021.107761; 93 W. Zhou, P. Wang, A.A. Heidari, X. Zhao, H. Chen Spiral Gaussian mutation sine cosine algorithm: framework and comprehensive performance optimization Expert Syst. Appl., 209 (2022), p. 118372, 10.1016/j.eswa.2022.118372; 94 H. Ren, J. Li, H. Chen, C. Li Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies Math. Comput. Simulat., 181 (2021), pp. 380-409; 95 D. Xu, N. Ning, Y. Xu, B. Wang, Q. Cui, Z. Liu, X. Wang, D. Liu, H. Chen, M.G. Kong An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks Cancer Cell Int., 19 (2019), pp. 135-155, 10.1016/j.eswa.2019.03.043; 96 A.A. Heidari, R. Ali Abbaspour, H. Chen Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training Appl. Soft Comput., 81 (2019), p. 105521, 10.1016/j.asoc.2019.105521; 97 P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms Neural Comput. Appl., 32 (2020), pp. 3923-3937, 10.1007/s00521-018-3822-5; 98 M.M. Dehshibi, M. Sourizaei, M. Fazlali, O. Talaee, H. Samadyar, J. Shanbehzadeh A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding Multimed. Tool. Appl., 76 (2017), pp. 15951-15986, 10.1007/s11042-016-3891-3; 99 H. Nenavath, R.K. Jatoth Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl. Soft Comput., 62 (2018), pp. 1019-1043, 10.1016/j.asoc.2017.09.039; 100 Y. Zhou, J. Xie, L. Li, M. Ma Cloud model bat algorithm Sci. World J., 2014 (2014), p. 237102, 10.1155/2014/237102; 101 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory Nat. Hazards (2022), pp. 1-17; 102 S. Xiong, B. Li, S. Zhu DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network Complex Intell. Systems (2022), pp. 1-10; 103 X. Chen, Y. Xu, L. Meng, X. Chen, L. Yuan, Q. Cai, W. Shi, G. Huang Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data Sensor. Actuator. B Chem., 311 (2020), p. 127924; 104 X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao, W. Yunyun, L. Xiang Social similarity routing algorithm based on socially aware networks in the big data environment J. Signal Process. Syst., 94 (2022), pp. 1253-1267; 105 J. Xu, S. Pan, P.Z.H. Sun, S. Hyeong Park, K. Guo Human-Factors-in-Driving-Loop: driver identification and verification via a deep learning approach using psychological behavioral data IEEE Trans. Intell. Transport. Syst., 24 (2023), pp. 3383-3394; 106 X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, W. Zheng User OCEAN personality model construction method using a BP neural network Electronics, 11 (2022), p. 3022 View article CrossRefView in ScopusGoogle Scholar; 107 B. Li, Y. Lu, W. Pang, H. Xu Image Colorization using CycleGAN with semantic and spatial rationality Multimed. Tool. Appl. (2023), pp. 1-15; 108 Q. Xu, Y. Zeng, W. Tang, W. Peng, T. Xia, Z. Li, F. Teng, W. Li, J. Guo Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network IEEE J. Biomed. Health Inform., 24 (2020), pp. 2481-2489; 109 X.-F. Wang, P. Gao, Y.-F. Liu, H.-F. Li, F. Lu Predicting thermophilic proteins by machine learning Curr. Bioinf., 15 (2020), pp. 493-502; 110 A. Seifi, M. Ehteram, V.P. Singh, A. Mosavi Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN Sustainability, 12 (2020), p. 4023; 111 F. Yang, H. Moayedi, A. Mosavi Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks Sustainability, 13 (2021), p. 9898; 112 C. Zhao, H. Wang, H. Chen, W. Shi, Y. Feng, Y. Wang, H. Xiao, J. Zheng JAMSNet: a remote pulse extraction network based on joint attention and multi-scale fusion Crit. Rev. Food Sci. Nutr. (2022), pp. 1-19, 10.1109/TCSVT.2022.3227348 View article Google Scholar; 113 J. Lv, G. Li, X. Tong, W. Chen, J. Huang, C. Wang, G. Yang Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction Comput. Biol. Med., 134 (2021), p. 104504, 10.1016/j.compbiomed.2021.104504; 114 S. Wang, B. Wang, Z. Zhang, A.A. Heidari, H. Chen, X. Wang, L.P. Wang, Y.B. Fu Class-aware sample reweighting optimal transport for multi-source domain adaptation Neurocomputing, 523 (2023), pp. 213-223, 10.1016/j.neucom.2022.12.048; 115 Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective Comput. Biol. Med., 147 (2022), p. 105726, 10.1016/j.compbiomed.2022.105726; 116 Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu Constructing dummy query sequences to protect location privacy and query privacy in location-based services World Wide Web, 24 (2021), pp. 25-49, 10.1007/s11280-020-00830-x; 117 B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification Comput. Biol. Med., 148 (2022), p. 105944, 10.1016/j.compbiomed.2022.105944; 118 X. Sun, X. Cao, B. Zeng, Q. Zhai, X. Guan Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties IEEE Trans. Smart Grid (2022), p. 1, 10.1109/TSG.2022.3232545; 119 Z. Wu, S. Shen, X. Lian, X. Su, E. Chen A dummy-based user privacy protection approach for text information retrieval Knowl. Base Syst., 195 (2020), p. 105679, 10.1016/j.knosys.2020.105679; 120 Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection J. Organ. End User Comput., 33 (2022), pp. 1-26; 121 Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou An effective approach for the protection of user commodity viewing privacy in e-commerce website Knowl. Base Syst., 220 (2021), p. 106952, 10.1016/j.knosys.2021.106952; 122 Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval ACM Transactions on Asian and Low-Resource Language Information Processing (2023); 123 X. Cao, T. Cao, Z. Xu, B. Zeng, F. Gao, X. Guan Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network IEEE Trans. Sustain. Energy, 14 (2023), pp. 1269-1284, 10.1109/TSTE.2022.3217514; 124 Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, S. Shen MSEva: a musculoskeletal rehabilitation evaluation system based on EMG signals ACM Trans. Sens. Netw., 19 (2022), pp. 1-23; 125 J. Zhou, X. Zhang, Z. Jiang Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine Wireless Commun. Mobile Comput., 2021 (2021), pp. 1-12, 10.1155/2021/5871684; 126 J. Chen, X. Zhu, H. Liu A mutual neighbor-based clustering method and its medical applications Comput. Biol. Med., 150 (2022), p. 106184, 10.1016/j.compbiomed.2022.106184; 127 Y. Chen, Y. Zhang, Y. Wang, S. Ta, M. Shi, Y. Zhou, M. Li, J. Fu, L. Wang, X. Liu, et al. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet J. Diabetes, 15 (2023), pp. 264-274; 128 Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, T. Zhang Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation IEEE Trans. Med. Imag., 41 (2022), pp. 1975-1989, 10.1109/TMI.2022.3151666; 129 L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer Expert Syst. Appl., 191 (2022), p. 116158, 10.1016/j.eswa.2021.116158; 130 C. Kumar, T.D. Raj, M. Premkumar, T.D. Raj A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters Optik, 223 (2020), p. 165277, 10.1016/j.ijleo.2020.165277; 131 E. Zorarpacı, S.A. Özel A hybrid approach of differential evolution and artificial bee colony for feature selection Expert Syst. Appl., 62 (2016), pp. 91-103, 10.1016/j.eswa.2016.06.004; 39; 26; https://hdl.handle.net/11323/10499Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  8. 8
    دورية أكاديمية

    جغرافية الموضوع: Colombia

    وصف الملف: 8 páginas; application/pdf

    العلاقة: Environmental Challenges; Angessa, A.T., Lemma, B., Yeshitela, K., &Endrias, M, 2022. Community perceptions towards the impacts of ecotourism development in the central highlands of Ethiopia: the case of Lake Wanchi and its adjacent landscapes. Heliyon 8 (2), e08924.; Armitage, D., 2005. Adaptive capacity and community-based natural resource management. Environmentalmanagement 35 (6), 703–715.; Arrieta, L., Rosa Muñoz, J., 2003. Estructura de la comunidad íctica de la Ciénaga de Mallorquín, Caribe colombiano. Bol. Invest. Mar. Cost. 32, 231–242.; Aweto, O., Fawole, O.P., Saayman, M., 2018. The effect of distance on community participation in ecotourism and conservation at Okomu National Park Nigeria. GeoJ. 1–15.; Azis, S.S.A., Sipan, I., Sapri, M., Zafirah, A.M., 2018. Creating an innocuous mangrove ecosystem: understanding the influence of ecotourism products from Malaysian and international perspectives. Ocean Coast Manag. 165, 416–427.; Bello, F.G., Lovelock, B., Carr, N., 2016. Constraints of community participation in protected area-based tourism planning: the case of Malawi. J. Ecotourism 16 (2), 131–151.; Berkes, F., 2004. Rethinking community-based conservation. Conserv. Biol. 18 (3), 621–630.; Bianco, S., Marcianò, C., 2018. Using an Hybrid AHP-SWOT Method to Build Participatory Ecotourism Development Strategies: the Case Study of the Cupe Valley Natural Reserve in Southern Italy. In: International Symposium on New Metropolitan Perspectives. Springer, Cham, pp. 327–336.; Black, R., Cobbinah, P.B., 2016. Local attitudes towards tourism and conservation in rural Botswana and Rwanda. J. Ecotourism 17 (1), 79–105.; Brandt, J.S., Buckley, R.C., 2018. A global systematic review of empirical evidence of ecotourism impacts on forests in biodiversity hotspots. Curr. Opin. Environ. Sustain. 32, 112–118.; Castro-Rodríguez, E., León-Luna, I., Pinedo-Hernández, J., 2018. Biogeochemistry of mangrove sediments in the Swamp of Mallorquin, Colombia. Reg. Stud. Marine Sci. 17, 38–46.; Ceballos-Lascurain, H., 1987. The future of ecotourism. Mexico J. 13–14 January. Chen, B.X., Qiu, Z.M., 2017. Community attitudes toward ecotourism development and environmental conservation in nature reserve: a case of Fujian Wuyishan National Nature Reserve, China. J. Mountain Sci. 14 (7), 1405–1418.; Chirozva, C., 2015. Community agency and entrepreneurship in ecotourism planning and development in the Great Limpopo Transfrontier Conservation Area. J. Ecotourism 14 (2–3), 185–203.; Cobbinah, P.B., Black, R., Thwaites, R., 2015. Ecotourism implementation in the Kakum Conservation Area, Ghana: administrative framework and local community experiences. J. Ecotourism 14 (2–3), 223–242.; Coria, J., Calfucura, E., 2012. Ecotourism and the development of indigenous communities: the good, the bad, and the ugly. Ecol. Econ. 73, 47–55.; Daniel, J., 2012. Sampling essentials: Practical guidelines For Making Sampling Choices. Sage Publications.; Das, M., Chatterjee, B., 2015. Ecotourism: a panacea or a predicament? Tour. Manag. Perspect. 14, 3–16.; Del Cairo, C., Gómez Zúñiga, S., Ortega Martínez, J.E., Ortiz Gallego, D., Rodríguez Maldonado, A.C., Vélez Triana, J.S., and Vergara Gutiérrez, T. (2018). Dinámicas socioecológicas y ecoturismo comunitario: un análisis comparativo en el eje fluvial Guayabero-Guaviare.; Donohoe, H.M., Needham, R.D., 2006. Ecotourism: the evolving contemporary definition. J. Ecotourism 5 (3), 192–210.; Enriquez-Acevedo, T., Botero, C.M., Cantero-Rodelo, R., Pertuz, A., Suarez, A., 2018. Willingness to pay for Beach Ecosystem Services: the case study of three Colombian beaches. Ocean&Coastal Management 161, 96–104.; Garcés-Ordóñez, O., Ríos-Mármol, M., Vivas-Aguas, J.L., 2016. Evaluación De La Calidad Ambiental De Los Manglares De La Ciénaga Mallorquín, Departamento Del Atlántico. Convenio CRA-INVEMAR No. 027 De 2015. Informe técnico final, Santa Marta, p. 32.; Ghosh, P., Ghosh, A., 2018. Is ecotourism a panacea? Political ecology perspectives from the Sundarban Biosphere Reserve, India. GeoJournal 1–22.; Hakim, L., 2017. Managing biodiversity for a competitive ecotourism industry in tropical developing countries: new opportunities in biological fields. In: AIP Conference Proceedings, 1908. AIP Publishing No. 1.; Harun, R., Chiciudean, G., Sirwan, K., Arion, F., Muresan, I., 2018. Attitudes and Perceptions of the Local Community towards Sustainable Tourism Development in Kurdistan Regional Government, Iraq. Sustainability 10 (9), 2991.; He, Y., Huang, P., Xu, H., 2018. Simulation of a dynamical ecotourism system with low carbon activity: a case from western China. J. Environ. Manage. 206, 1243–1252.; Hiwasaki, L., 2006. Community-based tourism: a pathway to sustainability for Japan’s protected areas. Soc. Nat. Resour. 19 (8), 675–692.; Idziak, W., Majewski, J., Zmyślony, P., 2015. Community participation in sustainable rural tourism experience creation: a long-term appraisal and lessons from a thematic villages project in Poland. J. Sustain. Tourism 23 (8–9), 1341–1362.; Iqbal, A., Ramachandran, S., Siow, M.L., Subramaniam, T., Afandi, S.H.M., 2022. Meaningful community participation for effective development of sustainabletourism: bibliometric analysis towards a quintuple helix model. J. Outdoor Recreat. Tour. 39, 100523. doi:10.1016/j.jort.2022.100523.; Jamal, T., Stronza, A., 2009. Collaboration theory and tourism practice in protected areas: stakeholders, structuring and sustainability. J. Sustain. Tourism 17 (2), 169–189.; Jurowski, C., Gursoy, D., 2004. Distance effects on residents’ attitudes toward tourism. Ann. Tourism Res. 31 (2), 296–312.; Kuuder, C.J.W., 2012. Community-based ecotourism and livelihood enhancement in Sirigu, Ghana. Int. J. Human. Soc. Sci. 2 (18).; Lanier, P., 2014. The positive impacts of ecotourism in protected areas. WIT Trans. Ecol. Environ. 187.; Lee, T.H., 2013. Influence analysis of community resident support for sustainable tourism development. Tourism management 34, 37–46.; Lee, T.H., Jan, F.H., 2018. Ecotourism behavior of nature-based tourists: an integrative framework. J. Travel Res. 57 (6), 792–810.; Lemahieu, A., Scott, L., Malherbe, W.S., Mahatante, P.T., Randrianarimanana, J.V., Aswani, S., 2018. Local perceptions of environmental changes in fishing communities of southwest Madagascar. Ocean Coast Manag 163, 209–221.; Liu, X., Li, J., 2018. Host Perceptions of Tourism Impact and Stage of Destination Development in a Developing Country. Sustainability 10 (7), 2300.; Luna-Cabrera, G.C., Narváez-Romo, A., Molina-Moreno, Á.A., 2020. Percepción de jóvenes rurales frente al ecoturismo en el Centro Ambiental Chimayoy, Municipio de Pasto, Colombia. Informacióntecnológica 31 (2), 229–238.; Mäntymaa, E., Ovaskainen, V., Juutinen, A., Tyrväinen, L., 2018. Integrating nature-based tourism and forestry in private lands under heterogeneous visitor preferences for forest attributes. J. Environ. Plann. Manage. 61 (4), 724–746.; McClanahan, B., Parra, T.S., &Brisman, A, 2019. Conflict, environment and transition: colombia, ecology and tourism after demobilisation. International J. Crime, Justice Soc. Democracy 8 (3), 74.; Manzolli, R.P., Blanco, D., Portz, L., Yanes, A., Zielinski, S., Ruiz Agudelo, C.A., Suarez, A., 2022. Large wood debris contributes to beach ecosystems but Colombian beachgoer’s do not recognize it. Sustainability 14 (13), 8140.; Martini, U., Buffa, F., Notaro, S., 2017. Community Participation, Natural Resource Management and the Creation of Innovative Tourism Products: evidence from Italian Networks of Reserves in the Alps. Sustainability 9 (12), 2314.; Matarrita-Cascante, D., Brennan, M.A., &Luloff, A.E, 2010. Community agency and sustainable tourism development: the case of La Fortuna, Costa Rica. J. Sustain. Tourism 18 (6), 735–756.; Mensah, I., Ernest, A., 2013. Community participation in ecotourism: the case of Bobiri Forest Reserve and butterfly sanctuary in Ashanti Region of Ghana. Am. J. Tourism Manag. 2 (A), 34–42.; Mills, A.J., Durepos, G., Wiebe, E., 2010. Case study surveys. In: Encyclopedia of Case Study Research, 1. SAGE Publications, Inc., pp. 125–126. doi:10.4135/9781412957397.n43.; Ministerio de Medio Ambiente y Desarrollo Sostenible, 2016. Resolución No.1478. Por medio de la cual se aprueba y actualiza la zonificación de los manglares de la unidad Ciénaga de Mallorquín, ubicada en jurisdicción de la Corporación Autónoma Regional del Atlántico (CRA) y se adoptan otras determinaciones Recuperado.; Mossaz, A., Buckley, R.C., Castley, J.G., 2015. Ecotourism contributions to conservation of African big cats. J. Nature Conserv. 28, 112–118.; Mountjoy, N.J., Whiles, M.R., Spyreas, G., Lovvorn, J.R., Seekamp, E., 2016. Assessing the efficacy of community-based natural resource management planning with a multi-watershed approach. Biol. Conserv. 201, 120–128.; Nielsen-Pincus, M., Sussman, P., Bennett, D.E., Gosnell, H., Parker, R., 2017. The influence of place on the willingness to pay for ecosystem services. Soc Nat Resour 30 (12), 1423–1441.; Okazaki, E., 2008. A community-based tourism model: its conception and use. Journal of sustainabletourism 16 (5), 511–529.; Otzen, T., Manterola, C., 2017. Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology 35 (1), 227–232.; Palmer, N.J., Chuamuangphan, N., 2018. Governance and local participation in ecotourism: community-level ecotourism stakeholders in Chiang Rai province, Thailand. J. Ecotourism 17 (3), 320–337. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/22231Test/.; POMCA, (2006) Características socioeconómicas de las comunidades aledañas a la ciénaga de mallorquín. Plan de Ordenamiento y manejo de la cuenca Hidrográfica de la ciénaga de mallorquín Barranquilla. Recuperado de: http://www.crautonoma.gov.coTest/ documentos/mallorquin/diagnostico/CaractProductiva.pdf.; PookhaoSonjai, N., Bushell, R., Hawkins, M., Staiff, R., 2018. Community-based ecotourism: beyond authenticity and the commodification of local people. J. Ecotourism 17 (3), 252–267.; Pornprasit, P., Rurkkhum, S., 2019. Performance evaluation of community-based ecotourism: a case study in Satun province. Thailand. J. Ecotourism 18 (1), 42–59.; Ramón-Hidalgo, A.E., Kozak, R.A., Harshaw, H.W., Tindall, D.B., 2017. Differential effects of cognitive and structural social capital on empowerment in two community ecotourism projects in Ghana. Soc Nat Resour 31 (1), 57–73.; Rasoolimanesh, S.M., Jaafar, M., Kock, N., Ahmad, A.G., 2017. The effects of community factors on residents’ perceptions toward World Heritage Site inscription and sustainable tourism development. Journal of Sustainable Tourism 25 (2), 198–216.; Robledano, F., Esteve, M.A., Calvo, J.F., Martínez-Paz, J.M., Farinós, P., Carreño, M.F., … Zamora, A., 2018. Multi-criteriaassessment of a proposedecotourism, environmentaleducation and researchinfrastructure in a uniquelagoonecosystem: the Encañizadas del Mar Menor (Murcia, SE Spain). JournalforNatureConservation 43, 201–210.; Romo, R., 2008. Redes Sociales De Los Pescadores Del Corregimiento La Playa en La Segunda Fase Del Proyecto Del Fondo Ambiental De Acuerdo Al Acceso a La Atención Primaria en Salud. Universidad del Norte, Barranquilla- Colombia Tesis de Posgrados en Maestría en Desarrollo Social).; Sakata, H., &Prideaux, B, 2013. An alternative approach to community-based ecotourism: a bottom-up locally initiated non-monetised project in Papua New Guinea. Journal of Sustainable Tourism 21 (6), 880–899.; Schismenos, S., Zaimes, G.N., Iakovoglou, V., Emmanouloudis, D., 2018. Environmental sustainability and ecotourism of riparian and deltaic ecosystems: opportunities for rural Eastern Macedonia and Thrace. Greece. International Journal of Environmental Studies 1–14.; Stone, M.T., Nyaupane, G.P., 2016. Ecotourism influence on community needs and the functions of protected areas: a systems thinking approach. J. Ecotourism 16 (3), 222–246.; Strong-Cvetich, N.J., Scorse, J., 2007. Ecotourism in post-conflict: A new Tool For Reconciliation. Monterey Institute of International Studies Available at. Stronza, A., Gordillo, J., 2008. Community views of ecotourism. Annals of tourism research 35 (2), 448–468.; Stronza, A.L., Hunt, C.A., Fitzgerald, L.A., 2019. Ecotourism forconservation? Annu. Rev. Environ. Resour. 44, 229–253.; Stronza, A., Pêgas, F., 2008. Ecotourism and conservation: two cases from Brazil andPeru. Human Dimens. Wildlife 13 (4), 263–279. doi:10.1080/10871200802187097.; Suarez, A., Arias-Arévalo, P., Martinez-Mera, E., Granobles-Torres, J.C., Enríquez-Acevedo, T., 2018b. Involving victim population in environmentally sustainable strategies: an analysis for post-conflict Colombia. Sci. Total Environ. 643, 1223–1231.; Trialfhianty, T.I., 2017. The role of the community in supporting coral reef restoration in Pemuteran, Bali, Indonesia. J. Coastal Conserv. 21 (6), 873–882.; Universidad del Norte, 2014a. Análisis Sobre El Manejo Integral Del Recurso Hídrico En La Ciénaga de Mallorquín, p. 16 Recuperado de.; Universidad del Norte. (2014b). Informe 2. Recuperado de http://guayacan.uninorte.edu.co/servicios-a-la-comunidad/informe_2.pdfTest.; UNIMAGDALENA y CRA. (2015). Definición de la ronda hídrica de la Ciénaga de Mallorquín y formulación del plan de manejo de manglares en el departamento del Atlántico. Comunidades de pescadores. Recuperado de: file:///E:/Users/Estudiante/ Downloads/INFORME_FINAL_CONVENIO_20.pdf Human Dimensions of Wildlife, 1– 14.; Velasco, A.M., Pérez-Ruzafa, A., Martínez-Paz, J.M., Marcos, C., 2018. Ecosystem services and main environmental risks in a coastal lagoon (Mar Menor, Murcia, SE Spain): the public perception. J. Nature Conserv. 43, 180–189.; 11; https://hdl.handle.net/11323/10480Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/

  9. 9
    دورية أكاديمية

    مصطلحات موضوعية: Dementia, Latin American, Biomarkers

    جغرافية الموضوع: Latin America

    وصف الملف: 15 páginas; application/pdf

    العلاقة: Alzheimer's and Dementia; 1. Baez S, Ibanez A. Dementia in Latin America: an Emergent Silent Tsunami. Front Aging Neurosci. 2016;8:253.; 2. Parra MA, Baez S, Allegri R, et al. Dementia in Latin America: assessing the present and envisioning the future. Neurology. 2018;90:222-231.; 3. Parra MA, Baez S, Sedeno L, et al. Dementia in Latin America: paving the way toward a regional action plan. Alzheimers Dement. 2021;17:295-313.; 4. Nitrini R, Barbosa MT, Dozzi Brucki SM, Yassuda MS, Caramelli P. Current trends and challenges on dementia management and research in Latin America. J Glob Health. 2020;10:010362.; 5. Manes F. The huge burden of dementia in Latin America. Lancet Neurol. 2016;15:29.; 6. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9:63-75.e2.; 7. Nitrini R, Bottino CM, Albala C, et al. Prevalence of dementia in Latin America: a collaborative study of population-based cohorts. Int Psychogeriatr. 2009;21:622-630.; 8. Wolters FJ, Chibnik LB, Waziry R, et al. Twenty-seven-year time trends in dementia incidence in Europe and the United States: the Alzheimer Cohorts Consortium. Neurology. 2020;95:e519-e531.; 9. Prince MJ, Wimo A, Guerchet MM, Ali GC, Wu Y-T, Prina M. World alzheimer report 2015 – The global impact of dementia: an analysis of prevalence, incidence, costs and trends. London: Alzheimer’s Disease International, 2015. 84 p.; 11. Jack CR, Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535-562.; 12. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280- 292.; 13. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734-746.; 14. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDSADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939-944.; 15. El Kadmiri N, Said N, Slassi I, El Moutawakil B, Nadifi S. Biomarkers for Alzheimer disease: classical and novel candidates’ review. Neuroscience. 2018;370:181-190.; 16. Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol. 2003;2:605-613.; 17. Burger nee Buch K, Padberg F, Nolde T, et al. Cerebrospinal fluid tau protein shows a better discrimination in young old (; 18. Hampel H, Buerger K, Zinkowski R, et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry. 2004;61:95-102.; 19. Hampel H, Burger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement. 2008;4:38-48.; 20. Mattsson N, Zetterberg H, Hansson O, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302:385-393.; 21. Bobinski M, de Leon MJ, Wegiel J, et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience. 2000;95:721- 725.; 22. Zarow C, Vinters HV, EllisWG, et al. Correlates of hippocampal neuron number in Alzheimer’s disease and ischemic vascular dementia. Ann Neurol. 2005;57:896-903.; 23. Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286:2120-2127.; 24. de Leon MJ, Convit A, Wolf OT, et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-Dglucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A. 2001;98:10966-10971.; 25. Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30:1104-1113.; 26. Koychev I, Gunn RN, Firouzian A, et al. PET tau and amyloidbeta burden in mild Alzheimer’s disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimers Dis. 2017;60:283-293.; 27. Ossenkoppele R, Smith R, Ohlsson T, et al. Associations between tau, Abeta, and cortical thickness with cognition in Alzheimer disease. Neurology. 2019;92:e601-e612.; 28. Aschenbrenner AJ, Gordon BA, Benzinger TLS, Morris JC, Hassenstab JJ. Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology. 2018;91:e859-e866.; 29. Jack CR, Jr, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539-547.; 30. Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx. 2004;1:226-234.; 31. Thambisetty M, Lovestone S. Blood-based biomarkers of Alzheimer’s disease: challenging but feasible. Biomark Med. 2010;4:65-79.; 32. Lista S, Faltraco F, Prvulovic D, Hampel H. Blood and plasma-based proteomic biomarker research in Alzheimer’s disease. Prog Neurobiol. 2013;101-102:1-17.; 33. Zetterberg H, Schott JM. Blood biomarkers for Alzheimer’s disease and related disorders. Acta Neurol Scand. 2022;146(1):51- 55.; 34. Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol Neurodegener. 2021;16:10.; 35. van der Flier WM, Scheltens P. Epidemiology and risk factors of dementia. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 5):v2-7.; 36. Goate A. Segregation of a missense mutation in the amyloid betaprotein precursor gene with familial Alzheimer’s disease. J Alzheimers Dis. 2006;9:341-347.; 37. Cruts M, Hendriks L, Van Broeckhoven C. The presenilin genes: a new gene family involved in Alzheimer disease pathology. Hum Mol Genet. 1996;5 Spec No: 1449-55.; 38. Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269:973- 977.; 39. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245- 256.; 40. Baker M, Mackenzie IR, Pickering-Brown SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916-919.; 41. Poorkaj P, Bird TD, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998;43:815-825.; 42. Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43:1467-1472.; 43. Duran-Aniotz C, Orellana P, Leon Rodriguez T, et al. Systematic review: genetic, neuroimaging, and fluids biomarkers for frontotemporal dementia across Latin America countries. Front Neurol. 2021;12:663407.; 44. Sexton C, Snyder HM, Chandrasekaran L, Worley S, Carrillo MC. Expanding representation of low and middle income countries in global dementia research: commentary from the Alzheimer’s. Association Front Neurol. 2021;12:633777.; 45. Tutor CA, Frias L. Development of PET in Latin America Experience of the first PET-Cyclotron Center. World J Nucl Med. 2002;1:219.; 46. Allegri RF, Chrem Mendez P, Calandri I, et al. Prognostic value of ATN Alzheimer biomarkers: 60-month follow-up results from the Argentine Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement (Amst). 2020;12:e12026.; 47. Allegri RF, Chrem Mendez P, Russo MJ, et al. Biomarkers of Alzheimer’s disease in mild cognitive impairment: experience in a memory clinic from Latin America. Neurologia (Engl Ed). 2021;36:201- 208.; 48. Cecchini MA, Yassuda MS, Squarzoni P, et al. Deficits in short-term memory binding are detectable in individuals with brain amyloid deposition in the absence of overt neurodegeneration in the Alzheimer’s disease continuum. Brain Cogn. 2021;152:105749.; 49. Damian A, Portugal F, Niell N, et al. Clinical impact of PET with (18)FFDG and (11)C-PIB in patients with dementia in a developing country. Front Neurol. 2021;12:630958.; 50. Faria DP, Duran FL, Squarzoni P, et al. Topography of 11C-Pittsburgh compound B uptake in Alzheimer’s disease: a voxel-based investigation of cortical and white matter regions. Braz J Psychiatry. 2019;41:101- 111.; 51. Coutinho AM, Busatto GF, de Gobbi Porto FH, et al. Brain PET amyloid and neurodegeneration biomarkers in the context of the 2018 NIA-AA research framework: an individual approach exploring clinicalbiomarker mismatches and sociodemographic parameters. Eur J Nucl Med Mol Imaging. 2020;47:2666-2680.; 52. de Souza GS, Andrade MA, Borelli WV, et al. Amyloid-beta PET classification on cognitive aging stages using the centiloid scale. Mol Imaging Biol. 2022;24:394-403.; 53. Hansen EO, Dias NS, Burgos ICB, et al. Millipore xMap(R) Luminex (HATMAG-68K): an accurate and cost-effective method for evaluating Alzheimer’s biomarkers in cerebrospinal fluid. Front Psychiatry. 2021;12:716686.; 54. Madeira C, Lourenco MV, Vargas-Lopes C, et al. d-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl Psychiatry. 2015;5:e561.; 55. Lourenco MV, Ribeiro FC, Sudo FK, et al. Cerebrospinal fluid irisin correlates with amyloid-beta, BDNF, and cognition in Alzheimer’s disease. Alzheimers Dement (Amst). 2020;12:e12034.; 56. Lourenco MV, Ribeiro FC, Santos LE, et al. Cerebrospinal fluid neurotransmitters, cytokines, and chemokines in Alzheimer’s and lewy body diseases. J Alzheimers Dis. 2021;82:1067-1074.; 57. Madeira C, Vargas-Lopes C, Brandao CO, et al. Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression. Front Psychiatry. 2018;9: 561.; 58. Reiman EM, Quiroz YT, Fleisher AS, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol. 2012;11:1048-1056.; 59. Hampel H, O’Bryant SE, Molinuevo JL, et al. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018;14:639-652.; 60. Ibanez A, Parra MA, Butler C, Latin A, the Caribbean Consortium on D. The Latin America and the Caribbean Consortium on Dementia (LAC-CD): from networking to research to implementation science. J Alzheimers Dis. 2021;82:S379-S394.; 61. Ibanez A, Yokoyama JS, Possin KL, et al. The multi-partner consortium to expand dementia Research in Latin America (ReDLat): driving multicentric research and implementation science. Front Neurol. 2021;12:631722.; 62. Reyes-Pablo AE, Campa-Cordoba BB, Luna-Viramontes NI, et al. National dementia BioBank: a strategy for the diagnosis and study of neurodegenerative diseases in Mexico. J Alzheimers Dis. 2020;76:853- 862.; 63. Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s diseasepreparing for a new era of disease-modifying therapies. Mol Psychiatry. 2021;26:296-308.; 64. Thijssen EH, La Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020;26:387-397.; 65. Khan TK, Alkon DL. Peripheral biomarkers of Alzheimer’s disease. J Alzheimers Dis. 2015;44:729-744.; 66. Ogonowski N, Salcidua S, Leon T, et al. Systematic review: microRNAs as potential biomarkers in mild cognitive impairment diagnosis. Front Aging Neurosci. 2021;13:807764.; 67. Alawode DOT, Heslegrave AJ, Ashton NJ, et al. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer’s disease. J Intern Med. 2021;290:583- 601.; 68. Wojsiat J, Laskowska-Kaszub K, Mietelska-Porowska A, Wojda U. Search for Alzheimer’s disease biomarkers in blood cells: hypothesesdriven approach. Biomark Med. 2017;11:917-931.; 69. O’Bryant SE, Mielke MM, Rissman RA, et al. Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement. 2017;13:45-58.; 70. Teunissen CE, Verberk IMW, Thijssen EH, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21:66-77.; 71. Ashton NJ, Kiddle SJ, Graf J, et al. Blood protein predictors of brain amyloid for enrichment in clinical trials. Alzheimers Dement (Amst). 2015;1:48-60.; 72. Cummings J, Feldman HH, Scheltens P. The “rights” of precision drug development for Alzheimer’s disease. Alzheimers Res Ther. 2019;11:76.; 73. Slachevsky A, Zitko P, Martinez-Pernia D, et al. GERO Cohort Protocol, Chile, 2017-2022: community-based cohort of functional decline in subjective cognitive complaint elderly. BMC Geriatr. 2020;20:505.; 74. Magaki S, Yong WH, Khanlou N, Tung S, Vinters HV. Comorbidity in dementia: update of an ongoing autopsy study. J Am Geriatr Soc. 2014;62:1722-1728.; 75. Gullett JM, Albizu A, Fang R, et al. Baseline neuroimaging predicts decline to dementia from amnestic mild cognitive impairment. Front Aging Neurosci. 2021;13:758298.; 76. Shiino A, Shirakashi Y, Ishida M, Tanigaki K, Japanese Alzheimer’s Disease Neuroimaging I. Machine learning of brain structural biomarkers for Alzheimer’s disease (AD) diagnosis, prediction of disease progression, and amyloid beta deposition in the Japanese population. Alzheimers Dement (Amst). 2021;13:e12246.; 77. Zhou Y, Song Z, Han X, Li H, Tang X. Prediction of Alzheimer’s disease progression based on magnetic resonance imaging. ACS Chem Neurosci. 2021;12:4209-4223.; 78. Di Tella S, Cabinio M, Isernia S, et al. Neuroimaging biomarkers predicting the efficacy of multimodal rehabilitative intervention in the Alzheimer’s Dementia Continuum Pathology. Front Aging Neurosci. 2021;13:735508.; 79. Menon MC, Murphy B, Heeger PS. Moving biomarkers toward clinical implementation in kidney transplantation. J Am Soc Nephrol. 2017;28:735-7347.; 80. Teunissen CE, Otto M, Engelborghs S, et al. White paper by the Society for CSF Analysis and Clinical Neurochemistry: overcoming barriers in biomarker development and clinical translation. Alzheimers Res Ther. 2018;10:30.; 81. Bachli MB, Sedeno L, Ochab JK, et al. Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: a machine learning approach. Neuroimage. 2020;208:116456.; 735; 721; 19; Yonatan Sanz Perl, Sol Fittipaldi, Cecilia Gonzalez Campo, Sebastián Moguilner, Josephine Cruzat, Matias E Fraile-Vazquez, Rubén Herzog, Morten L Kringelbach, Gustavo Deco, Pavel Prado, Agustin Ibanez, Enzo Tagliazucchi, Model-based whole-brain perturbational landscape of neurodegenerative diseases, eLife, 10.7554/eLife.83970, 12, (2023).; 552-5260; https://hdl.handle.net/11323/10349Test; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.coTest/

  10. 10
    دورية أكاديمية

    وصف الملف: 17 páginas; application/pdf

    العلاقة: Computer Systems Science and Engineering; [1] T. Rahman, A. Khandakar, M. A. Kadir, K. R. Islam, K. F. Islam et al., “Reliable tuberculosis detection using chest x-ray with deep learning, segmentation and visualization,” IEEE Access, vol. 8, pp. 191191–191586, 2020.; [2] N. Baghdadi, A. S. Maklad, A. Malki and M. A. Deif, “Reliable sarcoidosis detection using chest x-rays with efficientnets and stain-normalization techniques,” Sensors, vol. 22, no. 10, pp. 3846, 2022.; [3] L. An, K. Peng, X. Yang, P. Huang, Y. Luo et al., “E-TBNet: Light deep neural network for automatic detection of tuberculosis with x-ray dr imaging,” Sensors, vol. 22, no. 3, pp. 821, 2022.; [4] E. Showkatian, M. Salehi, H. Ghaffari, R. Reiazi, N. Sadighi et al., “Deep learning-based automatic detection of tuberculosis disease in chest X-ray images,” Polish Journal of Radiology, vol. 87, no. 1, pp. 118, 2022.; [5] T. Khatibi, A. Shahsavari and A. Farahani, “Proposing a novel multi-instance learning model for tuberculosis recognition from chest X-ray images based on CNNs, complex networks and stacked ensemble,” Physical and Engineering Sciences in Medicine, vol. 44, no. 1, pp. 291–311, 2021.; [6] A. S. Becker, C. Blüthgen, C. S. Wiltshire, B. Castelnuovo, A. Kambugu et al., “Detection of tuberculosis patterns in digital photographs of chest X-ray images using deep learning: Feasibility study,” The International Journal of Tuberculosis and Lung Disease, vol. 22, no. 3, pp. 328–335, 2018.; [7] S. Rajaraman and S. K. Antani, “Modality-specific deep learning model ensembles toward improving tb detection in chest radiographs,” IEEE Access, vol. 8, pp. 27318–27327, 2020.; [8] R. O. Panicker, K. S. Kalmady, J. Rajan and M. K. Sabu, “Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods,” Biocybernetics and Biomedical Engineering, vol. 38, no. 3, pp. 691–699, 2018.; [9] G. Tavaziva, M. Harris, S. K. Abidi, C. Geric, M. Breuninger et al., “Chest x-ray analysis with deep learningbased software as a triage test for pulmonary tuberculosis: An individual patient data meta-analysis of diagnostic accuracy,” Clinical Infectious Diseases, vol. 74, no. 8, pp. 1390–1400, 2021.; [10] J. Escorcia-Gutierrez, K. Beleño, J. Jimenez-Cabas, M. Elhoseny, M. Dahman Alshehri et al., “An automated deep learning enabled brain signal classification for epileptic seizure detection on complex measurement systems,” Measurement, vol. 195, no. 10, pp. 111226, 2022.; [11] S. P. Kale, J. Patil, A. Kshirsagar and V. Bendre, “Early lungs tuberculosis detection using deep learning,” in Intelligent Sustainable Systems. Lecture Notes in Networks and Systems book series, vol. 333. Singapore: Springer, pp. 287–294, 2022.; [12] J. Escorcia-Gutierrez, J. Cuello, C. Barraza, M. Gamarra, P. Romero-Aroca et al., “Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images,” in Int. Conf. on Computer Information Systems and Industrial Management, Barranquilla, Colombia, vol. 13293, pp. 202–213, 2022.; [13] J. Escorcia-Gutierrez, R. F. Mansour, K. Beleño, J. Jiménez-Cabas, M. Pérez et al., “Automated deep learning empowered breast cancer diagnosis using biomedical mammogram images,” Computers, Materials and Continua, vol. 71, no. 3, pp. 4221–4235, 2022.; [14] K. Muthumayil, S. Manikandan, S. Srinivasan, J. Escorcia-Gutierrez, M. Gamarra et al., “Diagnosis of leukemia disease based on enhanced virtual neural network,” Computers, Materials and Continua, vol. 69, no. 2, pp. 2031–2044, 2021.; [15] S. Althubiti, J. Escorcia-Gutierrez, M. Gamarra, R. Soto-Diaz, R. F. Mansour et al., “Improved metaheuristics with machine learning enabled medical decision support system,” Computers, Materials and Continua, vol. 73, no. 2, pp. 2423–2439, 2022.; [16] S. Manikandan, S. Srinivasan, J. Escorcia-Gutiérrez, M. Gamarra and R. F. Mansour, “Diagnosis of leukemia disease based on enhanced virtual neural network,” Computers, Materials and Continua, vol. 69, no. 2, pp. 2031–2044, 2021.; [17] Q. H. Nguyen, B. P. Nguyen, S. D. Dao, B. Unnikrishnan, R. Dhingra et al., “Deep learning models for tuberculosis detection from chest x-ray images,” in 26th Int. Conf. on Telecommunications (ICT), Hanoi, Vietnam, pp. 381–385, 2019.; [18] S. J. Heo, Y. Kim, S. Yun, S. S. Lim, J. Kim et al., “Deep learning algorithms with demographic information help to detect tuberculosis in chest radiographs in annual workers’ health examination data,” International Journal of Environmental Research and Public Health, vol. 16, no. 2, pp. 250, 2019.; [19] M. H. A. Hijazi, S. K. T. Hwa, A. Bade, R. Yaakob and M. S. Jeffree, “Ensemble deep learning for tuberculosis detection using chest X-ray and canny edge detected images,” IAES International Journal of Artificial Intelligence, vol. 8, no. 4, pp. 429, 2019.; [20] J. Escorcia-Gutierrez, J. Torrents-Barrena, M. Gamarra, P. Romero-Aroca, A. Valls et al., “Convexity shape constraints for retinal blood vessel segmentation and foveal avascular zone detection,” Computers in Biology and Medicine, vol. 127, pp. 104049, 2020.; [21] S. Dey, R. Roychoudhury, S. Malakar and R. Sarkar, “An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images,” Applied Soft Computing, vol. 114, no. 2, pp. 108094, 2022.; [22] E. Tasci, C. Uluturk and A. Ugur, “A voting-based ensemble deep learning method focusing on image augmentation and preprocessing variations for tuberculosis detection,” Neural Computing and Applications, vol. 33, no. 22, pp. 15541–15555, 2021.; [23] S. K. T. Hwa, A. Bade, M. H. A. Hijazi and M. Saffree Jeffree, “Tuberculosis detection using deep learning and contrastenhanced canny edge detected X-Ray images,” IAES International Journal of Artificial Intelligence, vol. 9, no. 4, pp. 713, 2020.; [24] A. T. Sahlol, M. A. Elaziz, A. T. Jamal, R. Damaševičius and O. Farouk Hassan, “A novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network features,” Symmetry, vol. 12, no. 7, pp. 1146, 2020.; [25] C. Dasanayaka and M. B. Dissanayake, “Deep learning methods for screening pulmonary tuberculosis using chest x-rays,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 9, no. 1, pp. 39–49, 2021.; [26] A. Haq, J. Li, S. Ahmad, S. Khan, M. Alshara et al., “Diagnostic approach for accurate diagnosis of covid19 employing deep learning and transfer learning techniques through chest x-ray images clinical data in ehealthcare,” Sensors, vol. 21, no. 24, pp. 8219, 2021.; [27] R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, D. Gupta, O. Castillo et al., “Unsupervised deep learning based variational autoencoder model for COVID-19 diagnosis and classification,” Pattern Recognition Letters, vol. 151, no. 6, pp. 267–274, 2021.; [28] H. Okut, “Deep learning for subtyping and prediction of diseases: Long-short term memory,” in Deep Learning Applications. United Kingdom: IntechOpen, 2021.; [29] R. Karthick, A. Senthilselvi, P. Meenalochini and S. S. Pandi, “Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA,” Circuits, Systems, and Signal Processing, vol. 41, no. 9, pp. 5254–5282, 2022.; 1353; 1337; 46; J. Escorcia-Gutierrez, R. Soto-Diaz, N. Madera, C. Soto, F. Burgos-Florez et al., "Computer-aided diagnosis for tuberculosis classification with water strider optimization algorithm," Computer Systems Science and Engineering, vol. 46, no.2, pp. 1337–1353, 2023. https://doi.org/10.32604/csse.2023.035253Test; https://hdl.handle.net/11323/10111Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/