يعرض 1 - 10 نتائج من 1,997 نتيجة بحث عن '"Images In…"', وقت الاستعلام: 1.23s تنقيح النتائج
  1. 1

    الوقت: 145-883, 145-887, 202-1240, 64-480

    وصف الملف: text/tab-separated-values, 14 data points

    العلاقة: Rafter, Patrick A; Gray, William Robert; Hines, Sophia K V; Burke, Andrea; Costa, Kassandra M; Gottschalk, Julia; Hain, Mathis P; Rae, James W B; Southon, John R; Walczak, Maureen H; Yu, Jimin; Adkins, Jess F; DeVries, Tim (2022): Global reorganization of deep-sea circulation and carbon storage after the last ice age. Science Advances, 8(46), https://doi.org/10.1126/sciadv.abq5434Test; Adkins, Jess F; Cheng, Hai; Boyle, Edward A; Druffel, Ellen R M; Edwards, R Lawrence (1998): Deep-Sea Coral Evidence for Rapid Change in Ventilation of the Deep North Atlantic 15,400 Years Ago. Science, 280(5364), 725-728, https://doi.org/10.1126/science.280.5364.725Test; Andrée, M; Beer, Jürg; Oeschger, Hans; Broecker, Wallace S; Mix, Alan C; Ragano, Beavan N; O'Hara, P; Bonani, G; Hofmann, Hans J; Morenzoni, Elvezio; Nessi, Marzio; Suter, M; Wolfli, Willy (1984): 14C measurements on foraminifera of deep sea core V28-238 and their preliminary interpretation. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 5(2), 340-345, https://doi.org/10.1016/0168-583XTest(84)90539-1; Ausín, Blanca; Sarnthein, Michael; Haghipour, Negar (2021): Glacial-to-deglacial reservoir and ventilation ages on the southwest Iberian continental margin. Quaternary Science Reviews, 255, 106818, https://doi.org/10.1016/j.quascirev.2021.106818Test; Balmer, Sven; Sarnthein, Michael (2018): Glacial-to-deglacial changes in North Atlantic meltwater advection and deep-water formation – Centennial-to-millennial-scale 14C records from the Azores plateau. Geochimica et Cosmochimica Acta, 236, 399-415, https://doi.org/10.1016/j.gca.2018.03.001Test; Barker, Stephen; Knorr, Gregor; Vautravers, Maryline J; Diz, Paula; Skinner, Luke C (2010): Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geoscience, 3(8), 567-571, https://doi.org/10.1038/NGEO921Test; Barron, John A; Heusser, Linda E; Herbert, Timothy D; Lyle, Mitchell W (2003): High resolution climatic evolution of coastal Northern California during the past 16,000 Years. Paleoceanography, 18(1), 1020, https://doi.org/10.1029/2002PA000768Test; Bova, Samantha C; Herbert, Timothy D; Altabet, Mark A (2018): Ventilation of Northern and Southern Sources of Aged Carbon in the Eastern Equatorial Pacific During the Younger Dryas Rise in Atmospheric CO2. Paleoceanography and Paleoclimatology, 33(11), 1151-1168, https://doi.org/10.1029/2018PA003386Test; Broecker, Wallace S; Andree, Michael; Bonani, Georges; Wolfli, Willy; Oeschger, Hans; Klas, Mieczyslawa; Mix, Alan C; Curry, William B (1988): Preliminary estimates for the radiocarbon age of deepwater in the glacial ocean. Paleoceanography, 3(6), 659-669, https://doi.org/10.1029/PA003i006p00659Test; Broecker, Wallace S; Barker, Stephen; Clark, Elizabeth; Bonani, Georges; Hajdas, Irka (2004): Ventilation of the Glacial Deep Pacific Ocean. Science, 306(5699), 1169-1172, https://doi.org/10.1126/science.1102293Test; Broecker, Wallace S; Clark, Elizabeth (2010): Search for a glacial-age 14C-depleted ocean reservoir. Geophysical Research Letters, 37(13), https://doi.org/10.1029/2010GL043969Test; Broecker, Wallace S; Clark, Elizabeth; Barker, Stephen (2008): Near constancy of the Pacific Ocean surface to mid-depth radiocarbon-age difference over the last 20 kyr. Earth and Planetary Science Letters, 274(3-4), 322-326, https://doi.org/10.1016/j.epsl.2008.07.035Test; Broecker, Wallace S; Klas, Mieczyslawa; Clark, Elizabeth; Trumbore, S; Bonani, Georges; Wolfli, Willy; Ivy, Susan (1990): AMS Radiocarbon Measurements on Foraminifera Shells from Deep-Sea. Radiocarbon, 32(2), 119-133, https://doi.org/10.1017/S0033822200007542Test; Broecker, Wallace S; Klas, Mieczyslawa; Ragano, Beavan N; Mathieu, Guy; Mix, Alan C; Andree, Michael; Oeschger, Hans; Woelfli, Willy; Suter, Martin; Bonani, Georges; Hofmann, Hans J; Nessi, Marzio; Morenzoni, Elvezio (1988): Accelerator mass spectrometry radiocarbon measurements on marine carbonate samples from deep sea cores and sediment traps. Radiocarbon, 30(3), 261-295, https://hdl.handle.net/10150/652917Test; Broecker, Wallace S; Peng, Tsung-Hung; Trumbore, S; Bonani, Georges; Wolfli, Willy (1990): The distribution of radiocarbon in the glacial ocean. Global Biogeochemical Cycles, 4(1), 103-117, https://doi.org/10.1029/GB004i001p00103Test; Bryan, Sean P; Marchitto, Thomas M; Lehman, Scott J (2010): The release of 14C-depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea. Earth and Planetary Science Letters, 298(1-2), 244-254, https://doi.org/10.1016/j.epsl.2010.08.025Test; Burke, Andrea; Robinson, Laura F (2012): The Southern Ocean's role in carbon exchange during the last deglaciation. Science, 335(6068), 557-561, https://doi.org/10.1126/science.1208163Test; Cao, Li; Fairbanks, Richard G; Mortlock, Richard A; Risk, Michael J (2007): Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial. Quaternary Science Reviews, 26(5-6), 732-742, https://doi.org/10.1016/j.quascirev.2006.10.001Test; Chen, Tianyu; Robinson, Laura F; Burke, Andrea; Claxton, Louis M; Hain, Mathis P; Li, Tao; Rae, James W B; Stewart, Joseph A; Knowles, Timothy; Fornari, Daniel J; Harpp, Karen S (2020): Persistently well-ventilated intermediate-depth ocean through the last deglaciation. Nature Geoscience, 13(11), 733-738, https://doi.org/10.1038/s41561-020-0638-6Test; Chen, Tianyu; Robinson, Laura F; Burke, Andrea; Southon, John; Spooner, Peter T; Morris, Paul J; Ng, Hong Chin (2015): Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation. Science, 349(6255), 1537-1541, https://doi.org/10.1126/science.aac6159Test; Cléroux, Caroline; deMenocal, Peter B; Guilderson, Thomas P (2011): Deglacial radiocarbon history of tropical Atlantic thermocline waters: absence of CO2 reservoir purging signal. Quaternary Science Reviews, 30(15-16), 1875-1882, https://doi.org/10.1016/j.quascirev.2011.04.015Test; Cook, Mea S; Keigwin, Lloyd D (2015): Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: Evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography, 30(3), 174-195, https://doi.org/10.1002/2014PA002649Test; Dai, Yuhao; Yu, Jimin; Rafter, Patrick A (2021): Deglacial Ventilation Changes in the Deep Southwest Pacific. Paleoceanography and Paleoclimatology, 36(2), https://doi.org/10.1029/2020PA004172Test; Davies-Walczak, Maureen H; Mix, Alan C; Stoner, Joseph S; Southon, John R; Cheseby, Maziet; Xuan, Chuang (2014): Late Glacial to Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2 sources. Earth and Planetary Science Letters, 397, 57-66, https://doi.org/10.1016/j.epsl.2014.04.004Test; de la Fuente, Maria; Skinner, Luke C; Calvo, Eva; Pelejero, Carles; Cacho, Isabel (accepted): Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific. Nature Communications, 6(1), https://doi.org/10.1038/ncomms8420Test; De Pol-Holz, Ricardo; Keigwin, Lloyd D; Southon, John R; Hebbeln, Dierk; Mohtadi, Mahyar (2010): No signature of abyssal carbon in intermediate waters off Chile during deglaciaition. Nature Geoscience, 3(3), 192-195, https://doi.org/10.1038/ngeo745Test; Duplessy, Jean-Claude; Arnold, Maurice; Bard, Edouard; Juillet-Leclerc, A; Kallel, Nejib; Labeyrie, Laurent D (1989): AMS 14C Study of Transient Events and of the Ventilation Rate of the Pacific Intermediate Water During the Last Deglaciation. Radiocarbon, 31(03), 493-502, https://doi.org/10.1017/S003382220001208XTest; Eltgroth, Selene F; Adkins, Jess F; Robinson, Laura F; Southon, John; Kashgarian, Michaele (2006): A deep-sea coral record of North Atlantic radiocarbon through the Younger Dryas: Evidence for intermediate water/deepwater reorganization. Paleoceanography, 21(4), PA4207, https://doi.org/10.1029/2005PA001192Test; Ezat, Mohamed M; Rasmussen, Tine L; Skinner, Luke C; Zamelczyk, Katarzyna (2019): Deep ocean 14C ventilation age reconstructions from the Arctic Mediterranean reassessed. Earth and Planetary Science Letters, 518, 67-75, https://doi.org/10.1016/j.epsl.2019.04.027Test; Ezat, Mohamed M; Rasmussen, Tine Lander; Thornalley, David J R; Olsen, Jesper; Skinner, Luke C; Hönisch, Bärbel; Groeneveld, Jeroen (2017): Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates. Paleoceanography, 32(2), 172-181, https://doi.org/10.1002/2016PA003053Test; Freeman, Emma; Skinner, Luke C; Tisserand, Amandine; Dokken, Trond; Timmermann, Axel; Menviel, Laurie; Friedrich, Torsten (2015): An Atlantic–Pacific ventilation seesaw across the last deglaciation. Earth and Planetary Science Letters, 424, 237-244, https://doi.org/10.1016/j.epsl.2015.05.032Test; Freeman, Emma; Skinner, Luke C; Waelbroeck, Claire; Hodell, David A (2016): Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum. Nature Communications, 7(1), https://doi.org/10.1038/ncomms11998Test; Galbraith, Eric Douglas; Jaccard, Samuel L; Pedersen, Thomas F; Sigman, Daniel M; Haug, Gerald H; Cook, Mea S; Southon, John R; Francois, Roger (2007): Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature, 449(7164), 890-894, https://doi.org/10.1038/nature06227Test; Gebhardt, Holger; Sarnthein, Michael; Grootes, Pieter Meiert; Kiefer, Thorsten; Kühn, Hartmut; Schmieder, Frank; Röhl, Ursula (2008): Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V. Paleoceanography, 23(4), PA4212, https://doi.org/10.1029/2007PA001513Test; Goldstein, S J; Lea, David W; Chakraborty, Supriyo; Kashgarian, Michaele; Murrell, Michael T (2001): Uranium-series and radiocarbon geochronology of deep-sea corals: implications for Southern Ocean ventilation rates and the oceanic carbon cycle. Earth and Planetary Science Letters, 193(1-2), 167-182, https://doi.org/10.1016/S0012-821XTest(01)00494-0; Gorbarenko, Sergey A; Tsoy, Ira B; Astakhov, Anatolii S; Artemova, Antonina V; Gvozdeva, I G; Annin, V K (2007): Paleoenvironmental changes in the northern shelf of the Sea of Okhotsk during the Holocene. Stratigraphy and Geological Correlation, 15(6), 656-671, https://doi.org/10.1134/S0869593807060044Test; Gottschalk, Julia; Michel, Elisabeth; Thöle, Lena M; Studer, Anja S; Hasenfratz, Adam P; Schmid, Nicole; Butzin, Martin; Mazaud, Alain; Martínez-García, Alfredo; Szidat, Sönke; Jaccard, Samuel L (2020): Glacial heterogeneity in Southern Ocean carbon storage abated by fast South Indian deglacial carbon release. Nature Communications, 11(1), 6192, https://doi.org/10.1038/s41467-020-20034-1Test; Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire (2016): Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nature Communications, 7(11539), https://doi.org/10.1038/ncomms11539Test; Hines, Sophia K V; Eiler, J M; Southon, John R; Adkins, Jess F (2019): Dynamic Intermediate Waters Across the Late Glacial Revealed by Paired Radiocarbon and Clumped Isotope Temperature Records. Paleoceanography and Paleoclimatology, 34(7), 1074-1091, https://doi.org/10.1029/2019PA003568Test; Hines, Sophia K V; Southon, John R; Adkins, Jess F (2015): A high-resolution record of Southern Ocean intermediate water radiocarbon over the past 30,000 years. Earth and Planetary Science Letters, 432, 46-58, https://doi.org/10.1016/j.epsl.2015.09.038Test; Ikehara, Ken; Danhara, Tohru; Yamashita, Tohru; Tanahashi, Manabu; Morita, S; Ohkushi, Ken´ichi (2011): Paleoceanographic control on a large marine reservoir effect offshore of Tokai, south of Japan, NW Pacific, during the last glacial maximum-deglaciation. Quaternary International, 246(1-2), 213-221, https://doi.org/10.1016/j.quaint.2011.07.005Test; Ikehara, Ken; Ohkushi, Ken´ichi; Shibahara, Akihiko; Hoshiba, Mayumi (2006): Change of bottom water conditions at intermediate depths of the Oyashio region, NW Pacific over the past 20,000 yrs. Global and Planetary Change, 53(1-2), 78-91, https://doi.org/10.1016/j.gloplacha.2006.01.011Test; Keigwin, Lloyd D (2002): Late Pleistocene-Holocene paleoceanography and ventilation of the Gulf of California. Journal of Oceanography, 58(2), 421-432, https://doi.org/10.1023/A:1015830313175Test; Keigwin, Lloyd D (2004): Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography, 19(4), PA4012, https://doi.org/10.1029/2004PA001029Test; Keigwin, Lloyd D; Boyle, Edward A (2008): Did North Atlantic overturning halt 17,000 years ago? Paleoceanography, 23(1), PA1101, https://doi.org/10.1029/2007PA001500Test; Keigwin, Lloyd D; Lehman, Scott J (2015): Radiocarbon evidence for a possible abyssal front near 3.1 km in the glacial equatorial Pacific Ocean. Earth and Planetary Science Letters, 425, 93-104, https://doi.org/10.1016/j.epsl.2015.05.025Test; Keigwin, Lloyd D; Schlegel, M A (2002): Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic. Geochemistry, Geophysics, Geosystems, 3(6), 1034, https://doi.org/10.1029/2001GC000283Test; Keigwin, Lloyd D; Swift, Stephen A (2017): Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. Proceedings of the National Academy of Sciences, 114(11), 2831-2835, https://doi.org/10.1073/pnas.1614693114Test; Kennett, James P; Ingram, B Lynn (1995): A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin. Nature, 377(6549), 510-514, https://doi.org/10.1038/377510a0Test; Li, Tao; Robinson, Laura F; Chen, Tianyu; Wang, Xingchen; Burke, Andrea; Rae, James W B; Pegrum-Haram, Albertine; Knowles, Oliver H; Li, Gaojun; Chen, Jun; Ng, Hong Chin; Prokopenko, Maria G; Rowland, George Henry; Samperiz, Ana; Stewart, Joseph A; Southon, John; Spooner, Peter T (2020): Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events. Science Advances, 6(42), eabb3807, https://doi.org/10.1126/sciadv.abb3807Test; Lindsay, Colin M; Lehman, Scott J; Marchitto, Thomas M; Carriquiry, José D; Ortiz, Joseph D (2016): New constraints on deglacial marine radiocarbon anomalies from a depth transect near Baja California. Paleoceanography, 31(8), 1103-1116, https://doi.org/10.1002/2015PA002878Test; Lund, David C; Mix, Alan C; Southon, John (2011): Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation. Nature Geoscience, 4(11), 771-774, https://doi.org/10.1038/ngeo1272Test; Lund, David C; Tessin, Allyson; Hoffman, JL; Schmittner, Andreas (2015): Southwest Atlantic water mass evolution during the last deglaciation. Paleoceanography, 30(5), 477-494, https://doi.org/10.1002/2014PA002657Test; Ma, Ruifang; Sépulcre, Sophie; Licari, Laetitia; Bassinot, Franck; Liu, Zhifei; Tisnérat-Laborde, Nadine; Kallel, Nejib; Yu, Zhaojie; Colin, Christophe (2019): Changes in Intermediate Circulation in the Bay of Bengal Since the Last Glacial Maximum as Inferred From Benthic Foraminifera Assemblages and Geochemical Proxies. Geochemistry, Geophysics, Geosystems, 20(3), 1592-1608, https://doi.org/10.1029/2018GC008179Test; Magana, Alexandra L; Southon, John R; Kennett, James P; Roark, E Brendan; Sarnthein, Michael; Stott, Lowell D (2010): Resolving the cause of large differences between deglacial benthic foraminifera radiocarbon measurements in Santa Barbara Basin. Paleoceanography, 115(4), PA4102, https://doi.org/10.1029/2010PA002011Test; Mangini, Augusto; Godoy, Jose M; Godoy, M L; Kowsmonn, R; Santos, G M; Ruckelshausen, Mario; Schröder-Ritzrau, Andrea; Wacker, L (2010): Deep sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the Younger Dryas. Earth and Planetary Science Letters, 293(3-4), 269-276, https://doi.org/10.1016/j.epsl.2010.02.041Test; Marchitto, Thomas M; Lehman, Scott J; Ortiz, Joseph D; Flückiger, Jacqueline; van Geen, Alexander (2007): Marine Radiocarbon Evidence for the Mechanism of Deglacial Atmospheric CO2 Rise. Science, 316(5830), 1456-1459, https://doi.org/10.1126/science.1138679Test; Martínez Fontaine, Consuelo; De Pol-Holz, Ricardo; Michel, Elisabeth; Siani, Giuseppe; Reyes-Macaya, Dharma; Martínez Méndez, Gema; DeVries, Tim; Stott, Lowell D; Southon, John; Mohtadi, Mahyar; Hebbeln, Dierk (2019): Ventilation of the deep ocean carbon reservoir during the last deglaciation: results from the southeast pacific. Paleoceanography and Paleoclimatology, 34(12), 2080-2097, https://doi.org/10.1029/2019PA003613Test; Max, Lars; Lembke-Jene, Lester; Riethdorf, Jan-Rainer; Tiedemann, Ralf; Nürnberg, Dirk; Kühn, Hartmut; Mackensen, Andreas (2014): Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation. Climate of the Past, 10(2), 419-605, https://doi.org/10.5194/cp-10-591-2014Test; McKay, Jennifer L; Pedersen, Thomas F; Southon, John (2005): Intensification of the oxygen minimum zone in the northeast Pacific off Vancouver Island during the last deglaciation: Ventilation and/or export production? Paleoceanography, 20(4), PA4002, https://doi.org/10.1029/2003PA000979Test; Minoshima, Kayo; Kawahata, Hodaka; Irino, Tomohisa; Ikehara, Ken; Aoki, Kaori; Uchida, Masao; Yoneda, Minoru; Shibata, Yasuyuki (2007): Deep water ventilation in the northwestern North Pacific during the last deglaciation and the early Holocene (15-5cal.kyrB.P.) based on AMS 14C dating. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 259(1), 448-452, https://doi.org/10.1016/j.nimb.2007.01.225Test; Missiaen, Lise; Wacker, L; Lougheed, Bryan C; Skinner, Luke C; Hajdas, I; Nouet, Julius; Pichat, Sylvain; Waelbroeck, Claire (2020): Radiocarbon dating of small sized foraminifer samples: insights into marine sediment mixing. Radiocarbon, 1-21, https://doi.org/10.1017/RDC.2020.13Test; Mix, Alan C; Lund, David C; Pisias, Nicklas G; Bodén, Per; Bornmalm, Lennart; Pike, Jennifer (1999): Rapid climate oscillations in the northeast Pacific during the last glaciation reflect northern and southern hemispheric sources. In: Clark, Peter U; Webb, Robert S; Keigwin, Lloyd D (eds.), Mechanisms of Millennial-scale Global Climate Change, American Geophysical Union Monography, 112, 127-148, https://doi.org/10.1029/GM112p0127Test; Okazaki, Yusuke; Kimoto, Katsunori; Asahi, Hirofumi; Sato, Miyako; Nakamura, Yuriko; Harada, Naomi (2014): Glacial to deglacial ventilation and productivity changes in the southern Okhotsk Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 53-66, https://doi.org/10.1016/j.palaeo.2013.12.013Test; Okazaki, Yusuke; Sagawa, Takuya; Asahi, Hirofumi; Horikawa, Keiji; Onodera, Jonaotaro (2012): Ventilation changes in the western North Pacific since the last glacial period. Climate of the Past, 8(1), 17-24, https://doi.org/10.5194/cp-8-17-2012Test; Okazaki, Yusuke; Timmermann, Axel; Menviel, Laurie; Harada, Naomi; Abe-Ouchi, Ayako; Chikamoto, Megumi; Mouchet, A; Asahi, H (2010): Deepwater Formation in the North Pacific During the Last Glacial Termination. Science, 329(5988), 200-204, https://doi.org/10.1126/science.1190612Test; Praetorius, Summer K; Condron, Alan; Mix, Alan C; Walczak, Maureen H; McKay, Jennifer L; Du, Jianghui (accepted): The role of Northeast Pacific meltwater events in deglacial climate change. Science Advances, 6(9), https://doi.org/10.1126/sciadv.aay2915Test; Rae, James W B; Sarnthein, Michael; Foster, Gavin L; Ridgwell, Andy; Grootes, Pieter Meiert; Elliott, Tim (2014): Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography, 29(6), 645-667, https://doi.org/10.1002/2013PA002570Test; Rafter, Patrick A; Herguera, Juan-Carlos; Southon, John R (2018): Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core. Climate of the Past, 14(12), 1977-1989, https://doi.org/10.5194/cp-14-1977-2018Test; Robinson, Laura F; Adkins, Jess F; Keigwin, Lloyd D; Southon, John; Fernández, Diego; Wang, S-L; Scheirer, Daniel S (2005): Radiocarbon Variability in the Western North Atlantic During the Last Deglaciation. Science, 310(5753), 1469-1473, https://doi.org/10.1126/science.1114832Test; Robinson, Laura F; van de Flierdt, Tina (2009): Southern Ocean evidence for reduced export of North Atlantic Deep Water during Heinrich event 1. Geology, 37(3), 195-198, https://doi.org/10.1130/G25363A.1Test; Ronge, Thomas A; Prange, Matthias; Mollenhauer, Gesine; Ellinghausen, Maret; Kuhn, Gerhard; Tiedemann, Ralph (accepted): Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO2 over the last 32,000 years. Paleoceanography and Paleoclimatology, https://doi.org/10.1029/2019PA003733Test; Ronge, Thomas A; Tiedemann, Ralf; Lamy, Frank; Köhler, Peter; Alloway, Brent V; De Pol-Holz, Ricardo; Pahnke, Katharina; Southon, John; Wacker, Lukas (2016): Radiocarbon constraints on the extent and evolution of the South Pacific carbon pool. Nature Communications, 7, 12 pp, https://doi.org/10.1038/ncomms11487Test; Rose, Kathryn A; Sikes, Elisabeth L; Guilderson, Thomas P; Shane, Philip A R; Hill, Tessa M; Zahn, Rainer; Spero, Howard J (2010): Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. Nature, 466(7310), 1093-1097, https://doi.org/10.1038/nature09288Test; Sarnthein, Michael; Balmer, Sven; Grootes, Pieter Meiert; Mudelsee, Manfred (2015): Planktic and benthic 14C reservoir ages for three ocean basins, calibrated by a suite of 14C plateaus in the glacial-to-deglacial Suigetsu atmospheric 14C record. Radiocarbon, 57(1), 129-151, https://doi.org/10.2458/azu_rc.57.17916Test; Sarnthein, Michael; Grootes, Pieter Meiert; Holbourn, Ann E; Kuhnt, Wolfgang; Kühn, Hartmut (2011): Tropical warming in the Timor Sea led deglacial Antarctic warming and atmospheric CO2 rise by more than 500 yr. Earth and Planetary Science Letters, 302, 337-348, https://doi.org/10.1016/j.epsl.2010.12.021Test; Sarnthein, Michael; Grootes, Pieter Meiert; Kennett, James P; Nadeau, Marie-Josée (2007): 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. In: Andreas Schmittner, John Chiang & Sidney Hemmings (eds.) Ocean Circulation: Mechanisms and Impacts. Geophysical Monograph Series, American Geophysical Union, 392 pages, ISBN: 978-0-87590-438-2, 173, 175-196, https://doi.org/10.1029/173GM13Test; Sarnthein, Michael; Kiefer, Thorsten; Grootes, Pieter Meiert; Elderfield, Henry; Erlenkeuser, Helmut (2006): Warmings in the far northwestern Pacific promoted pre-Clovis immigration to America during Heinrich event 1. Geology, 34(3), 141-144, https://doi.org/10.1130/G22200.1Test; Schröder-Ritzrau, Andrea; Mangini, Augusto; Lomitschka, Michael (2003): Deep-sea corals evidence periodic reduced ventilation in the North Atlantic during the LGM/Holocene transition. Earth and Planetary Science Letters, 216(3), 399-410, https://doi.org/10.1016/S0012-821XTest(03)00511-9; Shackleton, Nicholas J; Duplessy, Jean-Claude; Arnold, Maurice; Maurice, Pierre; Hall, Michael A; Cartlidge, Julie E (1988): Radiocarbon age of last glacial Pacific deep water. Nature, 335, 708-711, https://doi.org/10.1038/335708a0Test; Siani, Giuseppe; Michel, Elisabeth; De Pol-Holz, Ricardo; DeVries, Tim; Lamy, Frank; Carel, Mélanie; Isguder, Gulay; Dewilde, Fabien; Lourantou, Anna (2013): Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nature Communications, 4, 1-9, https://doi.org/10.1038/ncomms3758Test; Sikes, Elisabeth L; Guilderson, Thomas P (2016): Southwest Pacific Ocean surface reservoir ages since the last glaciation: Circulation insights from multiple‐core studies. Paleoceanography, 31(2), 298-310, https://doi.org/10.1002/2015PA002855Test; Sikes, Elisabeth L; Samson, Catherine R; Guilderson, Thomas P; Howard, William R (2000): Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature, 405(6786), 555-559, https://doi.org/10.1038/35014581Test; Skinner, Luke C; Freeman, Emma; Hodell, David A; Waelbroeck, Claire; Vázquez Riveiros, Natalia; Scrivner, Adam E (2020): Atlantic Ocean ventilation changes across the last deglaciation and their carbon cycle implications. Paleoceanography and Paleoclimatology, https://doi.org/10.1029/2020PA004074Test; Skinner, Luke C; Primeau, Francois; Freeman, Emma; de la Fuente, Maria; Goodwin, Philip; Gottschalk, Julia; Huang, Enqing; McCave, I Nick; Noble, Taryn L; Scrivner, Adam E (2017): Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nature Communications, 8(1), https://doi.org/10.1038/ncomms16010Test; Skinner, Luke C; Shackleton, Nicholas J (2004): Rapid transient changes in northeast Atlantic deep water ventilation age across Termination I. Paleoceanography, 19(2), PA2005, https://doi.org/10.1029/2003PA000983Test; Skinner, Luke C; Waelbroeck, Claire; Scrivner, Adam E; Fallon, Stewart J (2014): Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proceedings of the National Academy of Sciences, 111(15), 5480-5484, https://doi.org/10.1073/pnas.1400668111Test; Sortor, Rachel N; Lund, David C (2011): No evidence for a deglacial intermediate water D14C anomaly in the SW Atlantic. Earth and Planetary Science Letters, 310(1-2), 65-72, https://doi.org/10.1016/j.epsl.2011.07.017Test; Stott, Lowell D; Harazin, Kathleen M; Quintana Krupinski, Nadine B (2019): Hydrothermal carbon release to the ocean and atmosphere from the eastern equatorial Pacific during the last glacial termination. Environmental Research Letters, 14(2), 025007, https://doi.org/10.1088/1748-9326/aafe28Test; Stott, Lowell D; Southon, John; Timmermann, Axel; Koutavas, Athanasios (2009): Radiocarbon age anomaly at intermediate water depth in the Pacific Ocean during the last deglaciation. Paleoceanography, 24(2), PA2223, https://doi.org/10.1029/2008PA001690Test; Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, J M; Adkins, Jess F (2014): Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature, 511(7507), 75-78, https://doi.org/10.1038/nature13472Test; Thornalley, David J R; Barker, Stephen; Broecker, Wallace S; Elderfield, Henry; McCave, I Nick (2011): The Deglacial Evolution of North Atlantic Deep Convection. Science, 331(6014), 202-205, https://doi.org/10.1126/science.1196812Test; Thornalley, David J R; Bauch, Henning A; Gebbie, Geoffrey; Guo, W; Ziegler, Maren; Bernasconi, M; Barker, S; Skinner, Luke C; Yu, J (2015): A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period. Science, 349(6249), 706-710, https://doi.org/10.1126/science.aaa9554Test; Thunell, Robert C; Kepple, Alisa B (2004): Glacial-Holocene δ15N record from the Gulf of Tehuantepec, Mexico: Implications for denitrification in the eastern equatorial Pacific and changes in atmospheric N2O. Global Biogeochemical Cycles, 18(1), n/a-n/a, https://doi.org/10.1029/2002GB002028Test; Umling, Natalie E; Thunell, Robert C (2017): Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific. Nature Communications, 8(1), https://doi.org/10.1038/ncomms14203Test; van Geen, Alexander; Fairbanks, Richard G; Dartnell, Peter; McGann, Mary L; Gardner, James V; Kashgarian, Michaele (1996): Ventilation changes in the northeast Pacific during the last deglaciation. Paleoceanography, 11(5), 519-528, https://doi.org/10.1029/96PA01860Test; van Geen, Alexander; Zheng, Y; Bernhard, Joan M; Cannariato, Kevin G; Carriquiry, José D; Dean, Walter E; Eakins, B W; Ortiz, Joseph D; Pike, Jennifer (2003): On the preservation of laminated sediments along the western margin of North America. Paleoceanography, 18(4), 1098, https://doi.org/10.1029/2003PA000911Test; Voelker, Antje H L; Sarnthein, Michael; Grootes, Pieter Meiert; Erlenkeuser, Helmut; Laj, Carlo E; Mazaud, Alain; Nadeau, Marie-Josée; Schleicher, M (1998): Correlation of marine 14C-ages from the Nordic Seas with the GISP2 isotope record: Implications for radiocarbon calibration beyond 25ka BP. Radiocarbon, 40(1), 517-534, https://doi.org/10.1017/S0033822200030368Test; Walczak, Maureen H; Mix, Alan C; Cowan, Ellen A; Fallon, Stewart J; Fifield, L Keith; Alder, Jay R; Du, Jianghui; Haley, Brian A; Hobern, Tim; Padman, June; Praetorius, Summer K; Schmittner, Andreas; Stoner, Joseph S; Zellers, Sarah D (2020): Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science, 370(6517), 716-720, https://doi.org/10.1126/science.aba7096Test; Wan, Sui; Jian, Zhimin (2014): Deep water exchanges between the South China Sea and the Pacific since the last glacial period. Paleoceanography, 29(12), 1162-1178, https://doi.org/10.1002/2013PA002578Test; Weldeab, Syee; Friedrich, Tobias; Timmermann, Axel; Schneider, Ralph R (2016): Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas. Paleoceanography, 31(8), 1070-1082, https://doi.org/10.1002/2016PA002957Test; Zhao, Ning; Keigwin, Lloyd D (2018): An atmospheric chronology for the glacial-deglacial Eastern Equatorial Pacific. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-05574-xTest; Zhao, Ning; Marchal, Olivier; Keigwin, Lloyd D; Amrhein, Daniel; Gebbie, Geoffrey (2018): A Synthesis of Deglacial Deep-Sea Radiocarbon Records and Their (In)Consistency With Modern Ocean Ventilation. Paleoceanography and Paleoclimatology, 33(2), 128-151, https://doi.org/10.1002/2017PA003174Test; ReadMe - Marine fossil radiocarbon (14C) compilation up to 2021 (URI: https://download.pangaea.de/reference/116159/attachments/ReadMe.txtTest); https://doi.pangaea.de/10.1594/PANGAEA.967583Test; https://doi.org/10.1594/PANGAEA.967583Test

    الإتاحة: https://doi.org/10.1594/PANGAEA.96758310.1126/sciadv.abq543410.1126/science.280.5364.72510.1016/0168-583XTest(84)90539-110.1016/j.quascirev.2021.10681810.1016/j.gca.2018.03.00110.1038/NGEO92110.1029/2002PA00076810.1029/2018PA00338610.1029/PA003i006p0065910.1126/science.110229310.1029/2010GL04396910.1016/j.epsl.2008.07.03510.1017/S003382220000754210.1029/GB004i001p0010310.1016/j.epsl.2010.08.02510.1126/science.120816310.1016/j.quascirev.2006.10.00110.1038/s41561-020-0638-610.1126/science.aac615910.1016/j.quascirev.2011.04.01510.1002/2014PA00264910.1029/2020PA00417210.1016/j.epsl.2014.04.00410.1038/ncomms842010.1038/ngeo74510.1017/S003382220001208X10.1029/2005PA00119210.1016/j.epsl.2019.04.02710.1002/2016PA00305310.1016/j.epsl.2015.05.03210.1038/ncomms1199810.1038/nature0622710.1029/2007PA00151310.1016/S0012-821X(01)00494-010.1134/S086959380706004410.1038/s41467-020-20034-110.1038/ncomms1153910.1029/2019PA00356810.1016/j.epsl.2015.09.03810.1016/j.quaint.2011.07.00510.1016/j.gloplacha.2006.01.01110.1023/A:101583031317510.1029/2004PA00102910.1016/j.epsl.2015.05.02510.1029/2001GC00028310.1073/pnas.161469311410.1038/377510a010.1126/sciadv.abb380710.1002/2015PA00287810.1038/ngeo127210.1002/2014PA00265710.1029/2018GC00817910.1029/2010PA00201110.1016/j.epsl.2010.02.04110.1126/science.113867910.1029/2019PA00361310.5194/cp-10-591-201410.1016/j.nimb.2007.01.22510.1017/RDC.2020.1310.1029/GM112p012710.1016/j.palaeo.2013.12.01310.5194/cp-8-17-201210.1126/science.119061210.1126/sciadv.aay291510.1002/2013PA00257010.5194/cp-14-1977-201810.1126/science.111483210.1130/G25363A.110.1029/2019PA00373310.1038/ncomms1148710.1038/nature0928810.2458/azu_rc.57.1791610.1016/j.epsl.2010.12.02110.1130/G22200.110.1016/S0012-821X(03)00511-910.1038/335708a010.1038/ncomms375810.1002/2015PA00285510.1038/3501458110.1029/2020PA00407410.1038/ncomms1601010.1029/2003PA00098310.1073/pnas.140066811110.1016/j.epsl.2011.07.01710.1088/1748-9326/aafe2810.1029/2008PA00169010.1038/nature1347210.1126/science.119681210.1126/science.aaa955410.1029/2002GB00202810.1038/ncomms1420310.1029/96PA0186010.1029/2003PA00091110.1017/S003382220003036810.1126/science.aba709610.1002/2013PA00257810.1002/2016PA00295710.1038/s41467-018-05574-x10.1002/2017PA003174

  2. 2
  3. 3

    المؤلفون: Leys, Sally P, Federwisch, Luisa

    وصف الملف: text/tab-separated-values, 524 data points

  4. 4

    المؤلفون: Leys, Sally P, Federwisch, Luisa

    وصف الملف: text/tab-separated-values, 292 data points

  5. 5
  6. 6

    وصف الملف: text/tab-separated-values, 85 data points

    العلاقة: Jian, Zhimin; Wang, Yue; Dang, Haowen; Lea, David W; Liu, Zhengyu; Jin, Haiyan; Yin, Yaqian (2020): Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics. Proceedings of the National Academy of Sciences of the United States of America, 117(13), 7044-7051, https://doi.org/10.1073/pnas.1915510117Test; https://doi.pangaea.de/10.1594/PANGAEA.966830Test

  7. 7

    المؤلفون: Jäkel, Evelyn, Wendisch, Manfred

    وصف الملف: text/tab-separated-values, 55 data points

    العلاقة: Mech, Mario; Becker, Sebastian; Crewell, Susanne; Ehrlich, André; George, Geet; Hartmann, Jörg; Herber, Andreas; Jäkel, Evelyn; Klingebiel, Marcus; Krobot, Pavel; Luebke, Anna E; Lüpkes, Christof; Michaelis, Janosch; Müller, Hanno; Paul, Daria; Risse, Nils; Ritter, Christoph; Schäfer, Michael; Schirmacher, Imke; Schnitt, Sabrina; Schween, Jan H; Sperzel, Tim R; Wendisch, Manfred: Collection of data sources from the Polar 5 research aircraft for the HALO-(AC)³ field campaign, March/April 2022. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.968883Test; https://doi.pangaea.de/10.1594/PANGAEA.967288Test; https://doi.org/10.1594/PANGAEA.967288Test

  8. 8

    المؤلفون: Fuchs, Niels, Birnbaum, Gerit

    وصف الملف: text/tab-separated-values, 3 data points

    العلاقة: Fuchs, Niels; von Albedyll, Luisa; Birnbaum, Gerit; Linhardt, Felix; Oppelt, Natascha; Haas, Christian (in review): Sea ice melt pond bathymetry reconstructed from aerial photographs using photogrammetry: A new method applied to MOSAiC data. https://doi.org/10.5194/egusphere-2023-2859Test; Neckel, Niklas; Fuchs, Niels; Birnbaum, Gerit; Hutter, Nils; Jutila, Arttu; Buth, Lena; von Albedyll, Luisa; Ricker, Robert; Haas, Christian (2023): Helicopter-borne RGB orthomosaics and photogrammetric Digital Elevation Models from the MOSAiC Expedition. PANGAEA, https://doi.org/10.1594/PANGAEA.949433Test; Fuchs, Niels (2023): A multidimensional analysis of sea ice melt pond properties from aerial images. PhD thesis, Universität Bremen, https://doi.org/10.26092/ELIB/2249Test; Fuchs, Niels (2023): PASTA-ice Github Repository https://github.com/nielsfuchs/pasta_iceTest. Zenodo, https://doi.org/10.5281/ZENODO.7548469Test; https://doi.pangaea.de/10.1594/PANGAEA.964520Test; https://doi.org/10.1594/PANGAEA.964520Test

  9. 9

    المؤلفون: Westerhold, Thomas

    وصف الملف: image/tiff, 26.4 MBytes

    العلاقة: Uenzelmann-Neben, Gabriele; Westerhold, Thomas (2020): Kerguelen Plateau Drift Deposits: outstanding high-resolution chronicle of Cenozoic climatic and oceanographic changes in the southern Indian Ocean, Cruise No. SO272, Jan 11 - March 4, 2020, Port Louis (Mauritius) - Cape Town (South Africa). SONNE-Berichte, Gutachterpanel Forschungsschiffe, SO272, 92 pp, https://doi.org/10.2312/cr_so272Test; https://doi.pangaea.de/10.1594/PANGAEA.949457Test; https://doi.org/10.1594/PANGAEA.949457Test

  10. 10

    المؤلفون: Westerhold, Thomas

    وصف الملف: image/tiff, 26.4 MBytes

    العلاقة: Uenzelmann-Neben, Gabriele; Westerhold, Thomas (2020): Kerguelen Plateau Drift Deposits: outstanding high-resolution chronicle of Cenozoic climatic and oceanographic changes in the southern Indian Ocean, Cruise No. SO272, Jan 11 - March 4, 2020, Port Louis (Mauritius) - Cape Town (South Africa). SONNE-Berichte, Gutachterpanel Forschungsschiffe, SO272, 92 pp, https://doi.org/10.2312/cr_so272Test; https://doi.pangaea.de/10.1594/PANGAEA.949456Test; https://doi.org/10.1594/PANGAEA.949456Test