يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Retinal Pigment Epithelium"', وقت الاستعلام: 1.09s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Ophthalmology in Russia; Том 20, № 4 (2023); 624-633 ; Офтальмология; Том 20, № 4 (2023); 624-633 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2023-4

    وصف الملف: application/pdf

    العلاقة: https://www.ophthalmojournal.com/opht/article/view/2230/1155Test; Ghazi NG, Green WR. Pathology and pathogenesis of retinal detachment. Eye. 2002;16:411–421. doi:10.1038/sj.eye.6700197.; Mitry D. Pathogenesis of rhegmatogenous retinal detachment: predisposing anatomy and cell biology. Retina. 2010;30:1561–1572. doi:10.1097/IAE.0b013e3181f669e6.; Coffee RE. Symptomatic posterior vitreous detachment and the incidence of delayed retinal breaks: case series and meta-analysis. Am. J. Ophthalmol. 2007;144:409–413. doi:10.1016/j.ajo.2007.05.002.; Ducournau DH. Is pseudophakic retinal detachment a thing of the past in the phacoemulsification era. Ophthalmology. 2004;111:1069–1070. doi:10.1016/j.ophtha.2004.01.006.; Altan T, Acar N, Kapran Z. Transconjunctival 25-gauge suturelessvitrectomy and silicone oil injection in diabetic retinal detachment. Retina. 2008;28:1201–1206. doi:10.1097/IAE.0b013e3181853d3c.; Mitry D, Charteris DG, Fleck BW, Campbell H, Singh J. Thepidemiology of rhegmatogenous retinal detachment: geographicalvariation and clinical associations. Br J Ophthalmol. 2010;94:678–684. doi:10.1136/bjo.2009.157727.; Захаров В.Д., Шкворченко Д.О. Хирургическое лечение регматогенной отслойки сетчатки с пилингом внутренней пограничной мембраны. Практическая медицина. 2017;9(110):91–95.; Swindle-Reilly KE, Shah M, Hamilton H. Rabbit study of an in situ forming hydrogel vitreous substitute. Invest. Ophthalmol. Vis. Sci. 2009;50(10):4840–4846. doi:10.1167/iovs.08-2891.; Sharma A, Grigoropoulos V, Williamson TH. Management of primary rhegmatogenous retinal detachment with inferior breaks. Br J Ophthalmol. 2004;88:1372–1375. doi:10.1136/bjo.2003.041350.; Стебнев В.С., Малов В.М. Рецидивы отслойки сетчатки, связанные с прогрессированием пролиферативной витреоретинопатии после первичной эндовитреальной хирургии регматогенной отслойки сетчатки. Вестник Оренбургского государственного университета. 2009;12:131–134.; Marmor MF. Mechanisms of normal retinal adhesion. In: Ryan SJ, Wilkinson CP (eds). Retina Mosby: St Louis. 2001;1:1849–1869. doi:10.1016/B978-1-4557-07379.00019-9.; Lai TY, Fan DS, Lai WWK, Lam DSC. Peripheral and posterior pole retinal lesions in association with high myopia: a cross-sectional communitybased study in Hong Kong. Eye. 2008;22:209–213. doi:10.1038/sj.eye.670257323.; Stefansson E. Physiology of vitreous surgery. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2009;247(2):147–163. doi:10.1007/s00417-0080980-7.; Maruoka S, Matsuura T, Kawasaki K. Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Current Eye Research. 2006;31(7–8):599–606. doi:10.1080/02713680600813854.; Feltgen N, Weiss C, Wolf S. Scleral buckling versus primary vitrectomy in rhegmatogenous retinal detachment study (SPR Study): recruitment list evaluation. Study report no. 2. Graefes Arch. Clin. Exp. Ophthalmol. 2007;245:803–809. doi:10.1007/s00417-006-0399-y26.29.; Byer NE. What happens to untreated asymptomatic retinal breaks, and are they affected by posterior vitreous detachment? Ophthalmology. 1998;105:1045–1049. doi:10.1016/S0161-6420(98)96006-7.; Byer NE. Clinical study of retinal breaks. Trans Am Acad Ophthalmol Otolaryngol. 1967;71:461–473.; Machemer R. Pathogenesis and therapy of traction detachment in various retinal vascular diseases. Am J Ophthalmol. 1988;105:170–181. doi:10.1016/00029394(88)90182-1.; Smiddy WE, Green WR. Retinal dialysis: pathology and pathogenesis. Retina. 1982;2:94–116.; Лыскин П.В. Новые данные о механизме витреоретинальной адгезии и задней отслойке стекловидного тела человека. Российская детская офтальмология. 2019;2:57–62. doi:10.25276/2307-6658-2019-2-57-62.; Захаров В.Д., Кислицына Н.М., Новиков С.В., Беликова С.В. Изучение анатомо-топографических особенностей строения витреоретинального интерфейсау пациентов с регматогенной отслойкой сетчатки в ходе хромовитрэктомии с использованием суспензии Витреоконтраст для интраоперационного контрастирования структур стекловидного тела. Современные технологии лечения витреоретинальной патологии. 2012:82.; Луковская Н.Г., Астахов Ю.С., Сайгина Е.А. Анализ частоты и причин развития рецидивов отслойки сетчатки после наружных этапов оперативного лечения. Офтальмологические ведомости. 2010;3(4):24–28.; Тихонович М.В., Лыскин П.В., Иойлева Е.Э., Давыдова М.П., Гаврилова С.А. Экспрессия ростовых, трофических и провоспалительных факторов в эпиретинальных мембранах пациентов с тяжелой формой пролиферативной витреоретинопатии. Офтальмохирургия. 2015;4:36.; Краснов М.М., Сдобникова С.В., Федоров А.А., Столяренко Г.Е. Задняя гиалоидная мембрана как структурная основа роста новообразованной ткани при пролиферативной диабетической ретинопатии. 1998;114(3):16–20.; Ботабекова Т.К., Канафьянова М.С., АльАсталь М.С., Огай Г.О., Жаманбалина Ж.А., Кутжанова А.С. Хирургическое лечение пролиферативной диабетической ретинопатии осложненной отслойкой сетчатки с применением витреосинеретика «Vitrenal». Восток — Запад. Уфа, 2012:265–266.; Османов Р.Э. Современные методы хирургического лечения регматогенной отслойки сетчатки. Вестник Тамбовского Университета 2015;20(3):658–662.; Girard P, Mimoun G, Karpouzas I, Montefi ore G. Clinical risk factors for proliferative vitreoretinopathy after retinal detachment surgery. Retina. 1994;14:417–24. doi:10.1097/00006982-199414050-00005.; Фабрикантов О.Л., Коняев Д.А., Османов Р. Э. Лечение регматогенной отслойки сетчатки, осложненной пролиферативной витреоретинопатией (обзор литературы). Сибирский научный медицинский журнал. 2018;38(1):69–75. doi: org/10.15372/SSMJ2018011110.15372/SSMJ20180111.; Ricker L, Kessels A. Prediction of proliferative vitreoretinopathy after retinal detachment surgery: potential of biomarker profi ling. Am. J. Ophthalmol. 2012;154(2):347–354.; Tseng W, Cortez RT, Ramirez G, Stinnett S, Jaffe G.J. Prevalence and risk factors for proliferative vitreoretinopathy in eyes with rhegmatogenous retinal detachment but no previous vitreoretinal surgery. Am. J. Ophthalmol. 2004;137(6):1105–1115.; Roth A, Foos R. Surface wrinkling retinopathy in eye enucleated at autopsy. Tra ns. Am. Acad. Ophthalmol. Otolaryngol. 1971;75:1047–1059.; McDonald H, Johnson R, Ai E. Macular Epiretinal Membranes. Philadelphia: WB Saunders Company. 2006;3:2509–2525. doi:10.1016/B978-0-323-02598-0.50153-1.; Patronas M, Kroll A, Lou P, Ryan E. A Review of Vitreoretinal InterfacePathology. Int. Ophthalmol. Clin. 2009;49(1):133–143. doi:10.1097/IIO.0b013e3181924b3e.; Schumann RG, Eibl KH, Zhao F. Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes.Invest. Ophthalmol. Vis. Sci. 2011;52(11):7822–7834. doi:10.1167/iovs.11-7514.; Dieudonné SC, La Heij EC, Diederen R. High TGF–beta2 levels during primary retinal detachment may protect against proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2004;45(11):4113–4118. doi:10.1167/iovs.04-0643.; Kita T, Hata Y, Arita R. Role of TGF–beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target.Proc Natl Acad Sci USA. 2008;105:17504–17509. doi:10.1073/pnas.0804054105.; Kase S, Saito W, Yokoi M. Expression of glutamine synthetase and cell proliferation in human idiopathic epiretinal membrane. Brit. J. Ophthalmol. 2006;90(1):96–98. doi:10.1136/bjo.2005.078394.; Iannetti L, Accorinti M, Malagola R. Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane.Invest. Ophthalmol. Vis. Sci. 2011;52(8):5786–5789. doi:10.1167/iovs.10-7116.; Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Progress in Retinal and Eye Res. 2006;25(2):149–164. doi:10.1016/j.preteyeres.2005.09.001.; Harada T, Harada C, Mitamura Y. Neurotrophic factor receptors in epiretinal membranes after human diabetic retinopathy. Diabetes Care. 2002;25(6):1060–1065. doi:10.2337/diacare.25.6.1060.; Mandelcorn E, Khan Y, Javorska L. Idiopathic epiretinal membranes: ell type, growth factor expression, and fluorescein angiographic and retinal photographic correlations. Canadian J. Ophthalmol. 2003;38(6):457–463. doi:10.1016/s00084182(03)80023-6.; Yamane K, Minamoto A, Yamashita H. Proteome analysis of human vitreous proteins. Mol. Cell Proteomics. 2003;2(11):1177–1187. doi:10.1074/mcp.M300038MCP200.; Hiscott P, Hagan S, Heathcote L, heridan CM, Groenewald CP, Grierson I, Wong D, Paraoan L. Pathobiology of epiretinal and subretinal membranes: possible roles for the matricellular proteins thrombospondin 1 and osteonectin (SPARC). Eye (Lond.). 2002;16(4):393–403. doi:10.1038/sj.eye.6700196.; Lesnik Oberstein SY, Byun J, Herrera D. Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration. Mol. Vis. 2011;17:1794–1805.; Wang F, Xu X, Zhang X, Yan Y. Electron-immunostaining characteristics of platelet-derived growth factor, transforming growth factor beta1 and their receptors in epiretinal membranes. Zhonghua Yan Ke Za Zhi. 2000;36(5):369–371.; Kolesnikova LI. Oxidative stress as a nonspecific pathogenetic sign of reproductive disorders (review). Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 2012;32(1):58–66 (In Russ.).; Engin KN. Clinical evaluation of the neuroprotective effect of α-tocopherol on retına against glaucomatous damage. Eur. J. Ophthalmol. 2007;17:528–533. doi:10.1177/112067210701700408.; Шурыгина И.А., Шурыгин М.Г., Аюшинова Н.И., Каня О.В. Фибробласты и их роль в развитии соединительной ткани. Сибирский научный медицинский журнал. 2012;3:8–12.; Bu SC, Kuijer R, van der Worp RJ. Immunohistochemical Evaluation of Idiopathic Epiretinal Membranes and In Vitro Studies on the Effect of TGF-β on Muller Cells iERMs, Muller Cells, and TGF-β. Invest. Ophthalmol. Vis. Sci. 2015;56(11):6506–6514. doi:10.1167/iovs.14-15971.; Горшков И.М., Колесник С.В., Шестопалов В.И., Миридонова А.В. Клиникоморфологические особенности клеточного состава идиопатических эпиретинальных мембран у пациентов с различной остротой зрения. Офтальмохирургия. 2017;2:6–11. doi: org/10.25276/0235-4160-2017-2-6-11.; https://www.ophthalmojournal.com/opht/article/view/2230Test

  2. 2
    دورية أكاديمية

    المصدر: Ophthalmology in Russia; Том 17, № 3s (2020); 550-555 ; Офтальмология; Том 17, № 3s (2020); 550-555 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-3s

    وصف الملف: application/pdf

    العلاقة: https://www.ophthalmojournal.com/opht/article/view/1316/740Test; Brandl C., Brücklmayer C., Günther F., Zimmermann M.E., Küchenhoff H., Helbig H., Weber B.H.F., Heid I.M., Stark K.J. Retinal Layer Thicknesses in Early Age‑Related Macular Degeneration: Results From the German AugUR Study. Invest Ophthalmol Vis Sci. 2019;60(5):1581–1594. DOI:10.1167/iovs.18‑25332; Brown E.E., Ball J.D., Chen Z., Khurshid G.S., Prosperi M., Ash J.D. The Common Antidiabetic Drug Metformin Reduces Odds of Developing Age‑Related Macular Degeneration. Invest Ophthalmol Vis Sci. 20191;60(5):1470–1477. DOI:10.1167/iovs.18‑26422; Jonasson F., Fisher D.E., Eiriksdottir G., Sigurdsson S., Klein R., Launer L.J., Harris T., Gudnason V., Cotch M.F. Five‑year incidence, progression, and risk factors for age‑related macular degeneration: the age, gene/environment susceptibility study. Ophthalmology. 2014;121:1766–1772. DOI:10.1016/j.ophtha.2014.03.013; Handa J.T., Cano M., Wang L., Datta S., Liu T. Lipids, oxidized lipids, oxidation-specific epitopes, and Age‑related Macular Degeneration. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(4):430–440. DOI:10.1016/j.bbalip.2016.07.013; Telegina D.V., Kozhevnikova O.S., Kolosova N.G. Changes in retinal glial cells with age and during development of age‑related macular degeneration. Biochemistry (Mosc). 2018;83(9):1009–1017. DOI:10.1134/S000629791809002X; Kwon H.J., Lee S.M., Pak K.Y., Park S.W., Lee J.E., Byon I.S. Gender differences in the relationship between sex hormone deficiency and soft drusen. Curr Eye Res. 2017;42(11):1527–1536. DOI:10.1080/02713683.2017.1337155; Colijn J.M., den Hollander A.I., Demirkan A., Cougnard‑Grégoire A., Verzijden T., Kersten E., Meester‑Smoor M.A., Merle B.M.J., Papageorgiou G., Ahmad S., Mulder M.T., Costa M.A., Benlian P., Bertelsen G., Bron A.M., Claes B., Creuzot‑Garcher C., Erke M.G., Fauser S., Foster P.J., Hammond C.J., Hense H.W., Hoyng C.B., Khawaja A.P., Korobelnik J.F., Piermarocchi S., Segato T., Silva R., Souied E.H., Williams K.M., van Duijn C.M., Delcourt C., Klaver C.C.W. Increased high‑density lipoprotein levels associated with age‑related macular degeneration: evidence from the eye‑risk and european eye epidemiology consortia. Ophthalmology. 2019;126(3):393–406.DOI: 1016/j.ophtha.2018.09.045; Oeverhaus M., Meyer Zu., Westrup V., Dietzel M., Hense H.W., Pauleikhoff D. Genetic polymorphisms and the phenotypic characterization of individuals with early Age‑Related Macular Degeneration. Ophthalmologica. 2017;238(1–2):6–16. DOI:10.1159/000468949; Neale B.M., Fagerness J., Reynolds R., Sobrin L., Parker M., Raychaudhuri S., Tan P.L., Oh E.C., Merriam J.E., Souied E. Genome‑wide association study of advanced age‑related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc. Natl. Acad. Sci. USA. 2010;107:7395–7400. DOI:10.1073/pnas.0912019107; Liutkeviciene R., Vilkeviciute A., Smalinskiene A., Tamosiunas A., Petkeviciene J., Zaliuniene D., Lesauskaite V. The role of apolipoprotein E (rs7412 and rs429358) in age‑related macular degeneration. Ophthalmic Genet. 2018;39(4):457–462. DOI:10.1080/13816810.2018.1479429; Liutkevičienė R., Sungailienė R., Vilkevičiūtė A., Kriaučiūnienė L., Vaitkienė P., Chaleckis R., Deltuva V.P. Associations between CYP2C8 rs10509681 and rs11572080 gene polymorphisms and age‑related macular degeneration. Acta Med Litu. 2017;24(2):75–82. DOI:10.6001/actamedica.v24i2.3487; Klein R., Lee K.E., Tsai M.Y., Cruickshanks K.J., Gangnon R.E., Klein B.E.K. Oxidized Low‑density Lipoprotein and the Incidence of Age‑related Macular Degeneration. Ophthalmology. 2019;126(5):752–758. DOI:10.1016/j.ophtha.2018.12.026; Yanagi Y., Foo V.H.X., Yoshida A. Asian age‑related macular degeneration: from basic science research perspective. Eye (Lond). 2019; 33(1):34–49. DOI:10.1038/s41433‑018‑0225‑x; Algvere P.V., Kvanta A., Seregard S. Drusen maculopathy: a risk factor for visual deterioration. Acta Ophthalmol. 2016;94(5):427–433. DOI:10.1111/aos.13011; Cai H., Gong J., Abriola L., Hoyer D., Stem Cell Array Team N.G., Noggle S., Paull D., Del Priore L.V., Fields M.A. High‑throughput screening identifies compounds that protect RPE cells from physiological stressors present in AMD. Exp Eye Res. 2019. PII: S0014‑4835(18)30703‑6. DOI:10.1016/j.exer.2019.04.009; Liang X., Wang Z., Gao M., Wu S., Zhang J., Liu Q., Yu Y., Wang J., Liu W. Cyclic stretch induced oxidative stress by mitochondrial and NADPH oxidase in retinal pigment epithelial cells. BMC Ophthalmol. 2019;19(1):79. DOI:10.1186/s12886‑019‑1087‑0; Suzuki M., Kamei M., Itabe H., Yoneda K., Bando H., Kume N., Tano Y. Oxidized phospholipids in the macula increase with age and in eyes with age‑related macular degeneration. Mol Vis. 2007;13:772–778.; Ebrahimi K.B., Fijalkowski N., Cano M., Handa J.T. Decreased membrane complement regulators in the retinal pigmented epithelium contributes to age‑related macular degeneration. J. Pathol. 2013;229:729–742. DOI:10.1002/path.4128; Gu X., Meer S.G., Miyagi M., Rayborn M.E., Hollyfield J.G., Crabb J.W., Salomon R.G. Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age‑related macular degeneration. J Biol Chem. 2003;278:42027–42035.; Domalpally A., Clemons T.E., Danis R.P., Sadda S.R., Cukras C.A., Toth C.A., Friberg T.R., Chew E.Y. Peripheral Retinal Changes Associated with Age‑Related Macular Degeneration in the Age‑Related Eye Disease Study 2: Age‑Related Eye Disease Study 2 Report Number 12 by the Age‑Related Eye Disease Study 2 Optos PEripheral RetinA (OPERA) Study Research Group. Ophthalmology. 2017;124(4):479‑487. DOI:10.1016/j.ophtha.2016.12.004; Fuhrmann S., Zou C., Levine E.M. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res. 2014;123:141–150. DOI:10.1016/j.exer.2013.09.003; Tserentsoodol N., Sztein J., Campos M., Gordiyenko N.V., Fariss R.N., Lee J.W., Fliesler S.J., Rodriguez I.R. Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptormediated process. Mol Vis. 2006;12:1306–1318.; van der Schaft T.L., Mooy C.M., de Bruijn W.C., Bosman F.T., de Jong P.T. Immuno-histochemical light and electron microscopy of basal laminar deposit. Graefes Arch Clin Exp Ophthalmol. 1994;232:40–46.; Balaratnasingam C., Cherepanoff S., Dolz‑Marco R., Killingsworth M., Chen F.K., Mendis R., Mrejen S., Too L.K., Gal‑Or O., Curcio C.A., Freund K.B., Yannuzzi L.A. Cuticular drusen: clinical phenotypes and natural history defined using multimodal imaging. Ophthalmology. 2018;125(1):100–118. DOI:10.1016/j.ophtha.2017.08.033; Pikuleva I.A., Curcio C.A. Cholesterol in the retina: the best is yet to come. Prog Retin Eye Res. 2014; 41:64–89. DOI:10.1016/j.preteyeres.2014.03.002; Curcio C.A. Soft Drusen in Age‑Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci. 2018;59(4):AMD160–AMD181. DOI:10.1167/iovs.18‑24882; Oak A.S., Messinger J.D., Curcio C.A. Subretinal drusenoid deposits: further characterization by lipid histochemistry. Retina. 2014;34:825–826. DOI:10.1097/IAE.0000000000000121; Ferris F.L., Wilkinson C.P., Bird A., Chakravarthy U., Chew E., Csaky K., Sadda S.R. Clinical classification of age‑related macular degeneration. Ophthalmology. 2013;120(4):844–851. DOI:10.1016/j.ophtha.2012.10.036; Brandstetter C., Patt J., Holz F.G., Krohne T.U. Inflammasome priming increases retinal pigment epithelial cell susceptibility to lipofuscin phototoxicity by changing the cell death mechanism from apoptosis to pyroptosis. J Photochem Photobiol B. 2016;161:177–183. DOI:10.1016/j.jphotobiol.2016.05.018; Wu T., Tian J., Cutler R.G., Telljohann R.S., Bernlohr D.A., Mattson M.P., Handa J.T. Knockdown of FABP5 mRNA decreases cellular cholesterol levels and results in decreased apoB100 secretion and triglyceride accumulation in ARPE‑19 cells. Lab Invest. 2010;90:963–965. DOI:10.1038/labinvest.2010.87; Storti F., Raphael G., Griesser V., Klee K., Drawne F. Regulated efflux of photoreceptor outer segment‑derived cholesterol by human RPE cells. Exp. Eye Res. 2017;165:65–77. DOI:10.1016/j.exer.2017.09.008; Alamri A., Biswas L., Watson D.G., Shu X. Deletion of TSPO resulted in change of metabolomic profile in retinal pigment epithelial cells. Int J Mol Sci. 2019;20(6). PII: E1387. DOI:10.3390/ijms20061387; Mitter S.K., Song C., Qi X., Mao H., Rao H., Akin D., Lewin A., Grant M., Dunn W. Jr., Ding J., Bowes Rickman C., Boulton M. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy. 2014;10(11):1989–2005. DOI:10.4161/auto.36184; Hyttinen J.M.T., Błasiak J., Niittykoski M., Kinnunen K., Kauppinen A., Salminen A., Kaarniranta K. DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells‑Implications for age‑related macular degeneration (AMD). Ageing Res Rev. 2017;36:64–77. DOI:10.1016/j.arr.2017.03.006; Qin S., De Vries G.W. alpha2 but not alpha1 AMP‑activated protein kinase mediates oxidative stress‑induced inhibition of retinal pigment epithelium cell phagocytosis of photoreceptor outer segments. J Biol Chem. 2008; 283(11):6744–6751. DOI:10.1074/jbc.M708848200; Mitchell C.H. Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol. 2001;534(Pt 1):193–202.; Reigada D., Zhang X., Crespo A., Nguyen J., Liu J., Pendrak K., Stone R.A., Laties A.M., Mitchell C. Stimulation of an alpha1‑adrenergic receptor downregulates ecto‑5’ nucleotidase activity on the apical membrane of RPE cells. Purinergic Signal. ;2(3):499–507. DOI:10.1007/s11302‑005‑3980‑7; Guha S., Baltazar G.C., Coffey E.E., Tu L.A., Lim J.C., Beckel J.M., Patel S., Eysteinsson T., Lu W., O’Brien‑Jenkins A., Laties A.M., Mitchell C.H. Lysosomal alkalinization, lipid oxidation, and reduced phagosome clearance triggered by activation of the P2X7 receptor. FASEB J. 2013; 27(11):4500–4509. DOI:10.1096/fj.13‑236166; Sanderson J., Dartt D.A., Trinkaus‑Randall V., Pintor J., Civan M.M., Delamere N.A., Fletcher E.L., Salt T.E., Grosche A., Mitchell C.H. Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Müller cells, lens, trabecular meshwork, cornea and lacrimal gland. Exp Eye Res. 2014;127:270–279. DOI:10.1016/j.exer.2014.08.009; Madeira M.H., Rashid K., Ambrósio A.F., Santiago A.R., Langmann T. Blockade of microglial adenosine A2A receptor impacts inflammatory mechanisms, reduces ARPE‑19 cell dysfunction and prevents photoreceptor loss in vitro. Sci Rep. 2018;8(1):2272. DOI:10.1038/s41598‑018‑20733‑2; Cherepanoff S., McMenamin P., Gillies M.C., Kettle E., Sarks S.H. Bruch’s membrane and choroidal macrophages in early and advanced age‑related macular degeneration. Br J Ophthalmol. 2010;94:918–925. DOI:10.1136/bjo.2009.165563; Ban N., Lee T.J., Sene A., Choudhary M., Lekwuwa M., Dong Z., Santeford A., Lin J.B., Malek G., Ory D.S., Apte R.S. Impaired monocyte cholesterol clearance initiates age‑related retinal degeneration and vision loss. JCI Insight. 2018;3(17). PII: 120824. DOI:10.1172/jci.insight.120824; Sene A., Khan A.A., Cox D., Nakamura R.E., Santeford A., Kim B.M., Sidhu R., Onken M.D., Harbour J.W., Hagbi‑Levi S., Chowers I., Edwards P.A, Baldan A., Parks J.S., Ory D.S., Apte R.S. Impaired cholesterol efflux in senescent macrophages promotes age‑related macular degeneration. Cell Metab. 2013; 17:549–561. DOI:10.1016/j.cmet.2013.03.009; Biswas L., Farhan F., Reilly J., Bartholomew C., Shu X. TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells. Int J Mol Sci. 2018;19(12). PII: E3740. DOI:10.3390/ijms19123740; https://www.ophthalmojournal.com/opht/article/view/1316Test

  3. 3
    دورية أكاديمية

    المصدر: Ophthalmology in Russia; Том 15, № 3 (2018); 294-302 ; Офтальмология; Том 15, № 3 (2018); 294-302 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2018-3

    وصف الملف: application/pdf

    العلاقة: https://www.ophthalmojournal.com/opht/article/view/690/521Test; Злобина А.Н., Юрьева Т.Н. Центральная серозная хориоретинопатия. Лазерная хирургия сосудистой патологии глазного дна / под ред. проф. А.Г. Щуко. М.: Офтальмология, 2014. [Zlobina A.N., Iureva T.N. Central serous chorioretinopathy. Laser surgery of the vascular pathology of the fundus / ed. prof. A.G. Shchuko. Oftal’mologiya, 2014 (In Russ.)]; Gass J.D. Central serous chorioretinopathy and white subretinal exudation during pregnancy. Arch Ophthalmol. 1991;109:677–681.; Williamoson T.H., Harris A. Ocular blood flow measurement. Br J Ophthalmol. 1994;78:939–945.; Wei W.B., Xu L., Jonas J.B., Shao L., Du K.F., Wang S., Chen C.X., Xu J., Wang Y.X., Zhou J.Q., You Q.S. Subfoveal choroidal thickness: the Beijing eye study. Ophthalmology. 2013;120(1):175–180. DOI:10.1016/j.ophtha.2012.07.048; Iida, T., Kishi S., Hagimura N., et al. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina. 1999;19:508–512.; Щуко А.Г., Злобина А.Н., Юрьева Т.Н. Оптимизация критериев диагно стики центральной серозной хориоретинопатии. Клиническая Офтальмология. 2015;1:24. [Shchuko A.G., Zlobina A.N., Iureva T.N. Optimization of diagnostic criteria for central serous chorioretinopathy. Clinical Ophthalmology = Klinicheskaya Oftal’mologiya. 2015;1:24 (In Russ.)]; Drexler H. Endothelial dysfunction: clinical implications. Prog Cardiovasc Dis. 1997;39(4):287–324.; Gass J.D. Bullous retinal detachments and multiple retinal pigment epithelial detachments in patients receiving hemodialysis. Graefes Arch Clin Exp Ophthalmol. 1992;230:454–458.; Marmor M.F. New hypothesis on the pathogenesis and treatment of serous retinal detachment. Graefes Arch Clin Exp Ophthalmol. 1988;226:548–555.; Sekiryu T., Iida T., Maruko I. Infrared Fundus Autofluorescence and Cen tral Serous Chorioretinopathy. Investigative Ophthalmology & Visual Science. 2010;51(10):4956–4962. DOI:10.1167/iovs.09-5009; Guyer D.R., Yannuzzi L.A., Slakter J.S., et al. Digital indocyanine green videoangi ography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112:1057–1062.; Imamura Y., Fujiwara T., Margolis R. Enhanced depth imaging optical coher ence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–1473. DOI:10.1097/IAE.0b013e3181be0a83; Khng, C.G., Yap E.Y., Au-Eong K.G. Central serous retinopathy complicating sys temic lupus erythematosus: a case series. Clin Exp Ophthalmol. 2000;28:309–313. DOI:10.1046/j.1442-9071.2000.00328.x; Maruko I., Iida T., Sugano Y. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology. 2010;117:1792–1799. DOI:10.1016/j.ophtha.2010.01.023; Щуко А.Г., Пашковский А.А., Шестаков А.О., Якимов А.П., Юрьева Т.Н., Жу кова С.И., Алпатов С.А., Малышев В.В. Оптическая когерентная томография в диагностике офтальмологических заболеваний. Медицинская визуализация. 2003;3: 59–62. [Shchuko A.G., Pashkovsky A.A., Shestakov A.O., Yakimov A.P., Iureva T.N., Zhukova S.I., Alpatov S.A., Malyshev V.V. Optical coherence tomography in the diagnosis of ophthalmic diseases. Medical visualization = Meditsinskaya vizualizatsiya. 2003;3:59–62 (In Russ.)]; Branchini L.A., Adhi M., Regatieri C.V., et al. Analysis of Choroidal Morphology and Vasculature in Healthy Eyes Using Spectral-Domain Optical Coherence Tomogra phy. Ophthalmology. 2013;120(9):1901–1908. DOI:10.1016/j.ophtha.2013.01.066; Weiter J.J., Ernest J.T. Anatomy of the choroidal vasculature. Am J Ophthalmol. 1974;78:583.; Lumbroso B., Huang D., Chen C. Clinical OCT Angiography Atlas. New DelhiLondon-Philadelphia-Panama: The Health Sciences Publisher, 2015.; Lumbroso B., Huang D., Jia Y. Clinical Guide to Angio-OCT-Non Invasive Dyeless OCT Angiography. New Delhi: Jaypee Brothers Medical Publisher, 2015.; Lumbroso B., Huang D., Romano A. Clinical En Face OCT Atlas. New Delhi-Lon don-Philadelphia-Panama: Jaypee — highlights Medical Publisher, INC., 2013.; Spaide R.F., Koizumi H., Pozonni M.C. Enhanced depth imaging spectral-do main optical coherence tomography. Am J Ophthalmol. 2008;146:496–500. DOI:10.1016/j.ajo.2008.05.032; Hayrech S.S. Segmental nature of the choroidal vasculature. Br J Ophthalmol. 1975;59(11):631–648.; Savastano V.C., Rispoli M., Savastano F., Lumbroso B. En-Face Optical Coherence Tomography for Visualization of the Choroid. Ophthalmic Surgery. Lasers and Imaging Retina. 2015;46(5):561–565. DOI:10.3928/23258160-20150521-07; Grunwald J., Metelitsina T., Du Pont J., et al. Reduced foveolar choroidal blood flow in yes with increasing AMD severity. Invest Ophthalmol Vis Sci. 2005;46:1033–38. DOI:10.1167/iovs.04-1050; Guyer D.R., Schachat A.P., Green W.R. The choroid: structural considerations / In: Ryan S. J., ed.-in-chief. Retina. Philadelphia: Elsevier Mosby, 2006.; Hayrech S.S. Choriocapillaris. Graefes Arch Ophthalmol. 1974;192:165–179.; Johnson P.C. Red cell separation in the capillary network. Am J Physiol. 1971;221(1):99–104.; Внутренние болезни. Сердечно-сосудистая система: учеб. пособие / ред. Г.Е. Ройтберг, А.В. Струтынский. М.: МЕДпресс-информ; 2017. [Internal diseases. Cardiovascular system: Textbook. allowance / ed. G.Ye. Roitberg, A.V. Strutynsky Moscow: MEDpress-inform, 2017 (In Russ.)]; Фолков Б., Нил Э. Кровообращение / пер. с англ. Н.М. Верич. М.: Медицина; 1976. [Folkov B., Neil E. Blood circulation / transl. from English by Н.М. Verich. Meditsina; 1976 (In Russ.)]; Коган И.И., Конюков В.Н., Шацких А.В. Микрохирургическая анатомия кровеносных сосудов заднего отдела глазного яблока. Офтальмохирургия. 2003;3:42–46. [Kogan I.I., Konyukov V.N., Shatskikh A.V. Microsurgical anatomy of the blood vessels of the posterior eyeball. Ophthalmosurgery = Oftal’mokhirurgiya. 2003;3:42–46 (In Russ.)]; Астахов Ю.С., Тульцева С.Н., Титаренко А.И. Роль дисфункции эндотелия в патогенезе сосудистых заболеваний органа зрения. Регионарное кровообращение и микроциркуляция. 2017;15(4):5–13. [Astakhov Yu.S., Tultseva S.N., Titarenko A.I. The role of endothelial dysfunction in the pathogenesis of vascular diseases of the organ of vision. Regional Heamodynamics and microcirculation = Regionarnoye krovoobrashcheniye i mikrotsirkulyatsiya. 2016;15(4):5–16 (In Russ.)]; Iida, T., Spaide S.G., Negrao R.F. Central serous chorioretinopathy after epidural corticosteroid injection. Am J Ophthalmol. 2001;132:423–425. DOI: http://dx.doiTest. org/10.1016/S0002-9394(01)00970-9; Wang M., Munch I.C., Hasler P.W., et al. Central serous chorioretinopathy. Acta Ophthalmol. 2008;86:126–145 (4). DOI:10.1111/j.1600-0420.2007.00889.x; https://www.ophthalmojournal.com/opht/article/view/690Test