يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"神經毒性"', وقت الاستعلام: 0.71s تنقيح النتائج
  1. 1

    المؤلفون: 張志榮, Keith Chih-Jung Chang

    المساهمون: 唐傳義, Chuan-Yi Tang

    الوقت: 48

    وصف الملف: 155 bytes; text/html

    العلاقة: 1. Schmidt, N.J., E.H. Lennette, and H.H. Ho, An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis, 1974. 129(3): p. 304-9. 2. Chumakov, M., et al., Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol, 1979. 60(3-4): p. 329-40. 3. Hagiwara, A., I. Tagaya, and T. Yoneyama, Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology, 1978. 9(1): p. 60-3. 4. Liu, C.C., et al., An outbreak of enterovirus 71 infection in Taiwan, 1998: epidemiologic and clinical manifestations. J Clin Virol, 2000. 17(1): p. 23-30. 5. Ho, M., et al., An Epidemic of Enterovirus 71 Infection in Taiwan. N Engl J Med, 1999. 341(13): p. 929-935. 6. Shih, S.R., et al., Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Res, 2000. 68(2): p. 127-36. 7. Wang, J.R., et al., Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. J Clin Microbiol, 2002. 40(1): p. 10-5. 8. AbuBakar, S., et al., Identification of enterovirus 71 isolates from an outbreak of hand, foot and mouth disease (HFMD) with fatal cases of encephalomyelitis in Malaysia. Virus Res, 1999. 61(1): p. 1-9. 9. Chu, P.Y., et al., Molecular epidemiology of enterovirus 71 in Taiwan. Arch Virol, 2001. 146(3): p. 589-600. 10. Ho, M., Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect, 2000. 33(4): p. 205-16. 11. Lin, K.H., et al., Evolution of EV71 genogroup in Taiwan from 1998 to 2005: an emerging of subgenogroup C4 of EV71. J Med Virol, 2006. 78(2): p. 254-62. 12. Wang, S.F., et al., An Epidemiological Analysis of Enterovirus 71: Taiwan, 1998-2004. Epidemiology Bulletin, 2005. 21(5): p. 125-154. 13. Singh, S., C.L. Poh, and V.T. Chow, Complete sequence analyses of enterovirus 71 strains from fatal and non-fatal cases of the hand, foot and mouth disease outbreak in Singapore (2000). Microbiol Immunol, 2002. 46(11): p. 801-8. 14. Bible, J.M., et al., Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev Med Virol, 2007. 17(6): p. 371-9. 15. Brown, B.A., et al., Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol, 1999. 73(12): p. 9969-75. 16. Cardosa, M.J., et al., Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes. Emerg Infect Dis, 2003. 9(4): p. 461-8. 17. McMinn, P., et al., Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin Infect Dis, 2001. 32(2): p. 236-42. 18. Chan, Y.F. and S. AbuBakar, Human enterovirus 71 subgenotype B3 lacks coxsackievirus A16-like neurovirulence in mice infection. Virol J, 2005. 2: p. 74. 19. De Jesus, N., Epidemics to eradication: the modern history of poliomyelitis. Virology Journal, 2007. 4(1): p. 70. 20. Yan, J.J., et al., Complete genome analysis of enterovirus 71 isolated from an outbreak in Taiwan and rapid identification of enterovirus 71 and coxsackievirus A16 by RT-PCR. J Med Virol, 2001. 65(2): p. 331-9. 21. Santti, J., et al., Evidence of recombination among enteroviruses. J Virol, 1999. 73(10): p. 8741-9. 22. Yoke-Fun, C. and S. AbuBakar, Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes. BMC Microbiol, 2006. 6: p. 74. 23. Huang, S.C., et al., Appearance of intratypic recombination of enterovirus 71 in Taiwan from 2002 to 2005. Virus Res, 2008. 131(2): p. 250-9. 24. Arita, M., et al., Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol, 2005. 86(Pt 5): p. 1391-401.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/29012Test

  2. 2
  3. 3

    المؤلفون: 李元宏, Yuan-Hung Lee

    المساهمون: 張大慈, Dah-Tsyr Chang

    الوقت: 38

    وصف الملف: 155 bytes; text/html

    العلاقة: 1 Sorrentino, S. and Libonati, M. (1997) Structure-function relationships in human ribonucleases: main distinctive features of the major RNase types. FEBS Lett 404, 1-5 2 Nitto, T., Lin, C., Dyer, K. D., Wagner, R. A. and Rosenberg, H. F. (2005) Characterization of a ribonuclease gene and encoded protein from the reptile, Iguana iguana. Gene 352, 36-44 3 Cho, S., Beintema, J. J. and Zhang, J. (2005) The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 85, 208-220 4 Yang, D., Chen, Q., Rosenberg, H. F., Rybak, S. M., Newton, D. L., Wang, Z. Y., Fu, Q., Tchernev, V. T., Wang, M., Schweitzer, B., Kingsmore, S. F., Patel, D. D., Oppenheim, J. J. and Howard, O. M. (2004) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173, 6134-6142 5 Zhang, J., Dyer, K. D. and Rosenberg, H. F. (2003) Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res 31, 602-607 6 Rosenberg, H. F. (1995) Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem 270, 7876-7881 7 Hamann, K. J., Ten, R. M., Loegering, D. A., Jenkins, R. B., Heise, M. T., Schad, C. R., Pease, L. R., Gleich, G. J. and Barker, R. L. (1990) Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics 7, 535-546 8 Venge, P., Bystrom, J., Carlson, M., Hakansson, L., Karawacjzyk, M., Peterson, C., Seveus, L. and Trulson, A. (1999) Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29, 1172-1186 9 Venge, P. and Bystrom, J. (1998) Eosinophil cationic protein (ECP). Int J Biochem Cell Biol 30, 433-437 10 Rosenberg, H. F., Tenen, D. G. and Ackerman, S. J. (1989) Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci U S A 86, 4460-4464 11 Chang, H. T. (2000) Expression, purification, and functoinal analysis of human eosinophil cationic protein and eosinophil-derived neurotoxin. Master thesis 12 Gleich, G. J., Loegering, D. A., Bell, M. P., Checkel, J. L., Ackerman, S. J. and McKean, D. J. (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A 83, 3146-3150 13 Rosenberg, H. F., Ackerman, S. J. and Tenen, D. G. (1989) Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med 170, 163-176 14 Sorrentino, S., Tucker, G. K. and Glitz, D. G. (1988) Purification and characterization of a ribonuclease from human liver. J Biol Chem 263, 16125-16131 15 Yasuda, T., Mizuta, K., Sato, W. and Kishi, K. (1990) Purification and characterization of a ribonuclease from human spleen. Immunological and enzymological comparison with nonsecretory ribonuclease from human urine. Eur J Biochem 191, 523-529 16 Mizuta, K., Awazu, S., Yasuda, T. and Kishi, K. (1990) Purification and characterization of three ribonucleases from human kidney: comparison with urine ribonucleases. Arch Biochem Biophys 281, 144-151 17 Beintema, J. J., Hofsteenge, J., Iwama, M., Morita, T., Ohgi, K., Irie, M., Sugiyama, R. H., Schieven, G. L., Dekker, C. A. and Glitz, D. G. (1988) Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry 27, 4530-4538 18 Giembycz, M. A. and Lindsay, M. A. (1999) Pharmacology of the eosinophil. Pharmacol Rev 51, 213-340 19 Zhang, J. and Rosenberg, H. F. (2002) Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proc Natl Acad Sci U S A 99, 5486-5491 20 Prince, V. E. and Pickett, F. B. (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3, 827-837 21 Sullivan, J. A. and Gray, J. C. (2000) The pea light-independent photomorphogenesis1 mutant results from partial duplication of COP1 generating an internal promoter and producing two distinct transcripts. Plant Cell 12, 1927-1938 22 Chang, Y. H. (2005) Experimental and computational analysis of disease-related primate promoter: novel regulatory motifs in RNase2 and their functions in liver cells. Master thesis 23 Song, J., Ugai, H., Ogawa, K., Wang, Y., Sarai, A., Obata, Y., Kanazawa, I., Sun, K., Itakura, K. and Yokoyama, K. K. (2001) Two consecutive zinc fingers in Sp1 and in MAZ are essential for interactions with cis-elements. J Biol Chem 276, 30429-30434 24 Wu, C. X., Zhao, W. P., Kishi, H., Dokan, J., Jin, Z. X., Wei, X. C., Yokoyama, K. K. and Muraguchi, A. (2004) Activation of mouse RAG-2 promoter by Myc-associated zinc finger protein. Biochem Biophys Res Commun 317, 1096-1102 25 Bossone, S. A., Asselin, C., Patel, A. J. and Marcu, K. B. (1992) MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci U S A 89, 7452-7456 26 Song, J., Ugai, H., Nakata-Tsutsui, H., Kishikawa, S., Suzuki, E., Murata, T. and Yokoyama, K. K. (2003) Transcriptional regulation by zinc-finger proteins Sp1 and MAZ involves interactions with the same cis-elements. Int J Mol Med 11, 547-553 27 Dynan, W. S. and Tjian, R. (1983) The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35, 79-87 28 Song, J., Ugai, H., Kanazawa, I., Sun, K. and Yokoyama, K. K. (2001) Independent repression of a GC-rich housekeeping gene by Sp1 and MAZ involves the same cis-elements. J Biol Chem 276, 19897-19904 29 Wu, C. M. and Chang, M. D. (2004) Signal peptide of eosinophil cationic protein is toxic to cells lacking signal peptide peptidase. Biochem Biophys Res Commun 322, 585-592 30 Lemberg, M. K. and Martoglio, B. (2004) On the mechanism of SPP-catalysed intramembrane proteolysis; conformational control of peptide bond hydrolysis in the plane of the membrane. FEBS Lett 564, 213-218 31 van Dijk, T. B., Caldenhoven, E., Raaijmakers, J. A., Lammers, J. W., Koenderman, L. and de Groot, R. P. (1998) The role of transcription factor PU.1 in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene. Blood 91, 2126-2132 32 Stoeckert, C. J., Jr., Salas, F., Brunk, B. and Overton, G. C. (1999) EpoDB: a prototype database for the analysis of genes expressed during vertebrate erythropoiesis. Nucleic Acids Res 27, 200-203 33 Sandelin, A., Wasserman, W. W. and Lenhard, B. (2004) ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 32, W249-252 34 Tiffany, H. L., Handen, J. S. and Rosenberg, H. F. (1996) Enhanced expression of the eosinophil-derived neurotoxin ribonuclease (RNS2) gene requires interaction between the promoter and intron. J Biol Chem 271, 12387-12393 35 Tsutsui, H., Sakatsume, O., Itakura, K. and Yokoyama, K. K. (1996) Members of the MAZ family: a novel cDNA clone for MAZ from human pancreatic islet cells. Biochem Biophys Res Commun 226, 801-809 36 Duncan, D. D., Stupakoff, A., Hedrick, S. M., Marcu, K. B. and Siu, G. (1995) A Myc-associated zinc finger protein binding site is one of four important functional regions in the CD4 promoter. Mol Cell Biol 15, 3179-3186 37 Baltus, B., Buitenhuis, M., van Dijk, T. B., Vinson, C., Raaijmakers, J. A., Lammers, J. W., Koenderman, L. and de Groot, R. P. (1999) C/EBP regulates the promoter of the eosinophil-derived neurotoxin/RNS2 gene in human eosinophilic cells. J Leukoc Biol 66, 683-688 38 Ugai, H., Li, H. O., Komatsu, M., Tsutsui, H., Song, J., Shiga, T., Fearon, E., Murata, T. and Yokoyama, K. K. (2001) Interaction of Myc-associated zinc finger protein with DCC, the product of a tumor-suppressor gene, during the neural differentiation of P19 EC cells. Biochem Biophys Res Commun 286, 1087-1097 39 Parks, C. L. and Shenk, T. (1997) Activation of the adenovirus major late promoter by transcription factors MAZ and Sp1. J Virol 71, 9600-9607 40 Tsutsui, H., Geltinger, C., Murata, T., Itakura, K., Wada, T., Handa, H. and Yokoyama, K. K. (1999) The DNA-binding and transcriptional activities of MAZ, a myc-associated zinc finger protein, are regulated by casein kinase II. Biochem Biophys Res Commun 262, 198-205 41 Armstrong, S. A., Barry, D. A., Leggett, R. W. and Mueller, C. R. (1997) Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity. J Biol Chem 272, 13489-13495 42 Handen, J. S. and Rosenberg, H. F. (1997) Intronic enhancer activity of the eosinophil-derived neurotoxin (RNS2) and eosinophil cationic protein (RNS3) genes is mediated by an NFAT-1 consensus binding sequence. J Biol Chem 272, 1665-1669; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/32351Test

  4. 4

    المؤلفون: 張言信, Yen-Hsin Chang

    المساهمون: 張大慈, Margaret Dah-Tsyr Chang

    الوقت: 38

    وصف الملف: 155 bytes; text/html

    العلاقة: 1. Hardison, R.C. Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet 16, 369-72 (2000). 2. Frazer, K.A., Elnitski, L., Church, D.M., Dubchak, I. & Hardison, R.C. Cross-species sequence comparisons: a review of methods and available resources. Genome Res 13, 1-12 (2003). 3. Lenhard, B. et al. Identification of conserved regulatory elements by comparative genome analysis. J Biol 2, 13 (2003). 4. Nobrega, M. & Pennacchio, L.A. Comparative Genomic Analysis as a Tool for Biological Discovery. J Physiol (2003). 5. Liu, Y., Liu, X.S., Wei, L., Altman, R.B. & Batzoglou, S. Eukaryotic regulatory element conservation analysis and identification using comparative genomics. Genome Res 14, 451-8 (2004). 6. Caceres, M. et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci U S A 100, 13030-5 (2003). 7. Patel, Y.C., Greenwood, M., Kent, G., Panetta, R. & Srikant, C.B. Multiple gene transcripts of the somatostatin receptor SSTR2: tissue selective distribution and cAMP regulation. Biochem Biophys Res Commun 192, 288-94 (1993). 8. Evans, A.A. et al. Analysis of somatostatin receptor subtype mRNA expression in human breast cancer. Br J Cancer 75, 798-803 (1997). 9. Gonzalez-Billault, C. et al. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. J Neurobiol 58, 48-59 (2004). 10. Uchida, Y. Overexpression of full-length but not N-terminal truncated isoform of microtubule-associated protein (MAP) 1B accelerates apoptosis of cultured cortical neurons. J Biol Chem 278, 366-71 (2003). 11. Mestiri, S. et al. Genetic variation in the tumor necrosis factor-alpha promoter region and in the stress protein hsp70-2: susceptibility and prognostic implications in breast carcinoma. Cancer 91, 672-8 (2001). 12. Manning, D.L. et al. Differential expression of oestrogen regulated genes in breast cancer. Acta Oncol 34, 641-6 (1995). 13. McClelland, R.A. et al. Oestrogen-regulated genes in breast cancer: association of pLIV1 with response to endocrine therapy. Br J Cancer 77, 1653-6 (1998). 14. Manning, D.L. et al. Oestrogen-regulated genes in breast cancer: association of pLIV1 with lymph node involvement. Eur J Cancer 30A, 675-8 (1994). 15. Elliott, R.W., Samuelson, L.C., Lambert, M.S. & Meisler, M.H. Assignment of pancreatic ribonuclease gene to mouse chromosome 14. Cytogenet Cell Genet 42, 110-2 (1986). 16. Rosenberg, H.F. & Dyer, K.D. Human ribonuclease 4 (RNase 4): coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues. Nucleic Acids Res 23, 4290-5 (1995). 17. Weremowicz, S., Fox, E.A., Morton, C.C. & Vallee, B.L. Localization of the human angiogenin gene to chromosome band 14q11, proximal to the T cell receptor alpha/delta locus. Am J Hum Genet 47, 973-81 (1990). 18. Rosenberg, H.F. & Dyer, K.D. Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res 24, 3507-13 (1996). 19. Zhang, J., Dyer, K.D. & Rosenberg, H.F. Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res 31, 602-7 (2003). 20. Zhang, J., Dyer, K.D. & Rosenberg, H.F. RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res 30, 1169-75 (2002). 21. Gleich, G.J. et al. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A 83, 3146-50 (1986). 22. Sorrentino, S., Tucker, G.K. & Glitz, D.G. Purification and characterization of a ribonuclease from human liver. J Biol Chem 263, 16125-31 (1988). 23. Yasuda, T., Mizuta, K., Sato, W. & Kishi, K. Purification and characterization of a ribonuclease from human spleen. Immunological and enzymological comparison with nonsecretory ribonuclease from human urine. Eur J Biochem 191, 523-9 (1990). 24. Mizuta, K., Awazu, S., Yasuda, T. & Kishi, K. Purification and characterization of three ribonucleases from human kidney: comparison with urine ribonucleases. Arch Biochem Biophys 281, 144-51 (1990). 25. Beintema, J.J. et al. Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry 27, 4530-8 (1988). 26. Zhang, J. & Rosenberg, H.F. Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proc Natl Acad Sci U S A 99, 5486-91 (2002). 27. Nei, M. Gene duplication and nucleotide substitution in evolution. Nature 221, 40-2 (1969). 28. Hughes, A.L. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256, 119-24 (1994). 29. Holland, P.W. Gene duplication: past, present and future. Semin Cell Dev Biol 10, 541-7 (1999). 30. Meyhack, B., Bajwa, W., Rudolph, H. & Hinnen, A. Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences. Embo J 1, 675-80 (1982). 31. Sullivan, J.A. & Gray, J.C. The pea light-independent photomorphogenesis1 mutant results from partial duplication of COP1 generating an internal promoter and producing two distinct transcripts. Plant Cell 12, 1927-38 (2000). 32. Prince, V.E. & Pickett, F.B. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3, 827-37 (2002). 33. Baltus, B. et al. C/EBP regulates the promoter of the eosinophil-derived neurotoxin/RNS2 gene in human eosinophilic cells. J Leukoc Biol 66, 683-8 (1999). 34. Noguchi, E. et al. The promoter polymorphism in the eosinophil cationic protein gene and its influence on the serum eosinophil cationic protein level. Am J Respir Crit Care Med 167, 180-4 (2003). 35. Handen, J.S. & Rosenberg, H.F. Intronic enhancer activity of the eosinophil-derived neurotoxin (RNS2) and eosinophil cationic protein (RNS3) genes is mediated by an NFAT-1 consensus binding sequence. J Biol Chem 272, 1665-9 (1997). 36. Gombart, A.F. et al. Regulation of neutrophil and eosinophil secondary granule gene expression by transcription factors C/EBP epsilon and PU.1. Blood 101, 3265-73 (2003). 37. Rosenberg, H.F., Dyer, K.D., Tiffany, H.L. & Gonzalez, M. Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet 10, 219-23 (1995). 38. Higgins, D.G., Bleasby, A.J. & Fuchs, R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8, 189-91 (1992). 39. Sandelin, A., Wasserman, W.W. & Lenhard, B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 32, W249-52 (2004). 40. Heinemeyer, T. et al. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26, 362-7 (1998). 41. Tun-Wen Pai1, Margaret Dah-Tsyr Chang2, Jia-Han Chu1, Wei-Yuan Chang1 & Tai2, H.L. Ladderlike Stepping and Interval Jumping Searching Algorithms for DNA Sequences. Asia-Pacific Bioinformatics Conference(APBC2004), Dunedin, New Zealand (2004). 42. Dorflinger, U. et al. Activation of somatostatin receptor II expression by transcription factors MIBP1 and SEF-2 in the murine brain. Mol Cell Biol 19, 3736-47 (1999). 43. Liu, D. & Fischer, I. Structural analysis of the proximal region of the microtubule-associated protein 1B promoter. J Neurochem 69, 910-9 (1997). 44. Foucher, I., Montesinos, M.L., Volovitch, M., Prochiantz, A. & Trembleau, A. Joint regulation of the MAP1B promoter by HNF3beta/Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors. Development 130, 1867-76 (2003). 45. Boguski, M.S., Lowe, T.M. & Tolstoshev, C.M. dbEST--database for "expressed sequence tags". Nat Genet 4, 332-3 (1993). 46. van Dijk, T.B. et al. The role of transcription factor PU.1 in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene. Blood 91, 2126-32 (1998). 47. Tiffany, H.L., Handen, J.S. & Rosenberg, H.F. Enhanced expression of the eosinophil-derived neurotoxin ribonuclease (RNS2) gene requires interaction between the promoter and intron. J Biol Chem 271, 12387-93 (1996). 48. Futami, J. et al. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol 16, 413-9 (1997). 49. Watanabe, H. et al. DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature 429, 382-8 (2004). 50. Gegonne, A., Bosselut, R., Bailly, R.A. & Ghysdael, J. Synergistic activation of the HTLV1 LTR Ets-responsive region by transcription factors Ets1 and Sp1. Embo J 12, 1169-78 (1993). 51. Rosmarin, A.G., Luo, M., Caprio, D.G., Shang, J. & Simkevich, C.P. Sp1 cooperates with the ets transcription factor, GABP, to activate the CD18 (beta2 leukocyte integrin) promoter. J Biol Chem 273, 13097-103 (1998). 52. Livengood, J.A. & Nyborg, J.K. The high-affinity Sp1 binding site in the HTLV-1 promoter contributes to Tax-independent basal expression. Nucleic Acids Res 32, 2829-37 (2004). 53. Wu, Y., Zhang, X. & Zehner, Z.E. c-Jun and the dominant-negative mutant, TAM67, induce vimentin gene expression by interacting with the activator Sp1. Oncogene 22, 8891-901 (2003). 54. Walker, G.E., Wilson, E.M., Powell, D. & Oh, Y. Butyrate, a histone deacetylase inhibitor, activates the human IGF binding protein-3 promoter in breast cancer cells: molecular mechanism involves an Sp1/Sp3 multiprotein complex. Endocrinology 142, 3817-27 (2001).; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/32467Test