用於原子力顯微鏡掃瞄之細胞處理與分析

التفاصيل البيبلوغرافية
العنوان: 用於原子力顯微鏡掃瞄之細胞處理與分析
المؤلفون: Li, Yang-Guang, 李洋廣
المساهمون: 衛榮漢, Wei, Zung-Hang
سنة النشر: 2010
المجموعة: National Tsing Hua University Institutional Repository (NTHUR)
مصطلحات موضوعية: 原子力顯微鏡, 樣品處理, 楊氏係數
الوقت: 28
الوصف: 動力機械工程學系 ; 碩士 ; 國立清華大學 ; 原子力顯微鏡應用於生物樣品掃瞄時,需面對樣品柔軟、掃瞄環境於液態下可能造成的干擾與活體樣品處於移動狀態導致探針無法追蹤掃瞄的困難。在本研究中會進行原子力顯微鏡生物樣品的製備,並探討利用原子力顯微鏡進行影像掃瞄與力學量測的結果。 貼附式細胞樣品之製備,首先以黃光製程製作出微米結構陣列後 ,培養人類子宮頸癌類表皮細胞株SiHa於其上,後以乾燥方式將細胞形態固定之。原子力顯微鏡掃瞄其影像,經由影像呈現,除可了解細胞生長與底部結構間的互動外,更以此修正出合宜的樣品製備流程。 懸浮式細胞則以紅血球為例,使用離心方式將人類靜脈血中的紅血球純化、濃縮與清洗得到紅血球濃厚液。將血球固定在玻片上之後 ,以原子力顯微鏡掃瞄觀察血球形貌與幾何尺度,並經由力曲線計算其楊氏係數。
نوع الوثيقة: other/unknown material
اللغة: English
العلاقة: [1] J. W. Lee, K. S. Lee, N. Cho, B. K. Ju, K. B. Lee, and S. H. Lee, "Topographical guidance of mouse neuronal cell on SiO2 microtracks," Sensors and Actuators B: Chemical, vol. 128, pp. 252-257, 2007. [2] W. T. Su, I. M. Chu, J. Y. Yang, and C. D. Lin, "The geometric pattern of a pillared substrate influences the cell-process distribution and shapes of fibroblasts," Micron, vol. 37, pp. 699-706, 2006. [3] J. Mai, C. Sun, S. Li, and X. Zhang, "A microfabricated platform probing cytoskeleton dynamics using multidirectional topographical cues," Biomedical Microdevices, vol. 9, pp. 523-531, 2007. [4] E. Martinez, E. Engel, J. A. Planell, and J. Samitier , "Effects of artificial micro-and nano-structured surfaces on cell behaviour," Annals of Anatomy, 2008. [5] J. O. Gallagher, K. F. McGhee, C. D. W. Wilkinson, and M. O. Riehle, "Interaction of animal cells with ordered nanotopography," Nanobioscience, IEEE Transactions on, vol. 1, pp. 24-28, 2002. [6] A. Thapa, T. J. Webster, and K. M. Haberstroh, "Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion," Journal of Biomedical Materials Research, vol. 67, pp. 1374-1383, 2003. [7] F. Johansson, P. Carlberg, N. Danielsen, L. Montelius, and M. Kanje, "Axonal outgrowth on nano-imprinted patterns," Biomaterials, vol. 27, pp. 1251-1258, 2006. [8] M. J. Dalby, N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo, "The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder," Nature Materials, vol. 6, p. 997, 2007. [9] S. C. Bayliss, L. D. Buckberry, I. Fletcher, and M. J. Tobin, "The culture of neurons on silicon," Sensors & Actuators: A. Physical, vol. 74, pp. 139-142, 1999. [10]S. Vassanelli and P. Fromherz, "Neurons from rat brain coupled to transistors," Applied Physics A: Materials Science & Processing, vol. 65, pp. 85-88, 1997. [11]D. H. Davis, C. S. Giannoulis, R. W. Johnson, and T. A. Desai, "Immobilization of RGD to silicon surfaces for enhanced cell adhesion and proliferation," Biomaterials, vol. 23, pp. 4019-4027, 2002. [12]J. Ma, F. Z. Cui, B. F. Liu, and Q. Y. Xu, "Atomic force and confocal microscopy for the study of cortical cells cultured on silicon wafers," Journal of Materials Science: Materials in Medicine, vol. 18, pp. 851-856, 2007. [13]N. Turner, M. Armitage, R. Butler, and G. Ireland, "An in vitro model to evaluate cell adhesion to metals used in implantation shows significant differences between palladium and gold or platinum," Cell Biology International, vol. 28, pp. 541-547, 2004. [14]D. O. Meredith, L. Eschbach, M. O. Riehle, A. S. Curtis , and R. G. Richards, "Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion," J Orthop Res, vol. 25, pp. 1523-33, 2007. [15]U. G. Hofmann, C. Rotsch, W. J. Parak, and M. Radmacher , "Investigating the Cytoskeleton of Chicken Cardiocytes with the Atomic Force Microscope," Journal of Structural Biology, vol. 119, pp. 84-91, 1997. [16]Y. Mizutani, M. Tsuchiya, S. Hiratsuka, K. Kawahara, H. Tokumoto, and T. Okajima, "Elasticity of Living Cells on a Microarray during the Early Stages of Adhesion Measured by Atomic Force Microscopy," Japanese Journal of Applied Physics, vol. 47, pp. 6177-6180, 2008. [17]R. Nowakowski, P. Luckham, and P. Winlove, "Imaging erythrocytes under physiological conditions by atomic force microscopy," Biochimica et Biophysica Acta, vol. 1514, pp. 170-176, 2001. [18]M. S. Ho, F. J. Kuo, and Y. S. Lee, "Atomic force microscopic observation of surface-supported human erythrocytes," Applied Physics Letters, vol. 91, pp. 023901, 2007. [19]O. Hekele, C. G. Goesselsberger, and I. C. Gebeshuber, , "Nanodiagnostics performed on human red blood cells with atomic force microscopy," Materials Science and Technology , vol. 24, pp. 1162-1165, 2008. [20]M. Lekka, M. Fornal, G. P. Fosciak, K. Lebed, B. Wizner, T. Grodzicki, and J. Styczen, "Erythrocyte stiffness probed using atomic force microscope," Biorheology , vol. 42, pp. 307-317, 2005. [21]M. Fornal, M. Lekka, G. P. Fosciak, K. Lebed, T. Grodzicki, B. Wizner, and J. Styczen, "Erythrocyte stiffness in diabetes mellitus studied with atomic force microscope," Clinical Hemorheology and Microcirculation , vol. 35, pp. 273-276, 2006. [22]黃佩瑜, "以原子力顯微術在病毒感染細胞之形態觀察及活體細 胞量測技術之發展," 碩士論文, 成功大學, 2005 [23]蘇俊賢, "貧血和非貧血大鼠的紅血球細胞膜剛性係數與直流脈 衝裂解時間的關係之研究," 碩士論文, 嘉義大學, 2008; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/61065Test
الإتاحة: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/61065Test
رقم الانضمام: edsbas.F21C44C8
قاعدة البيانات: BASE