رسالة جامعية

具PH導向聚焦特性微小型腫瘤高溫療法電極系統之開發研究 ; The research and development of hyperthermia therapy with micro-electrode system and guideline of pH focusing character

التفاصيل البيبلوغرافية
العنوان: 具PH導向聚焦特性微小型腫瘤高溫療法電極系統之開發研究 ; The research and development of hyperthermia therapy with micro-electrode system and guideline of pH focusing character
المؤلفون: 王聖宏, Wang, Sheng-Hung
المساهمون: 王唯工, 臺灣大學:電機工程學研究所
سنة النشر: 2004
المجموعة: National Taiwan University Institutional Repository (NTUR)
مصطلحات موضوعية: 熱療, 癌症治療, hyperthermia therapy, cancer therapy
الوصف: 循環系統疾病一直是已開發國家的主要死因,而惡性腫瘤名列十大死因之首。本研究主要在開發研究具pH導向聚焦特性微小型腫瘤高溫療法電極系統,可針對低pH值腫瘤組織進行選擇性的熱療,以協助其他治療方法之不足。並可對於因灌流不足的血循環障礙的組織,進行局部組織的加溫,促進血循環灌流量。 本研究希望發展一套新的腫瘤高溫治療系統,藉由腫瘤細胞因缺氧而比正常細胞低pH值的特性,與組織中低pH值有較低阻抗值的特性 [32],配合電學基本原理,以解決一般熱療方式所面臨的問題:在無精準的判定分辨正常與腫瘤細胞情況下,高解析度的聚焦的實用性受到限制。本文在第三章中我們提出整個系統的架構方塊圖與其實現的方法,並藉由波型產生器、電極將一定電壓加在仿體上,找出影響系統效率的原因與參數,包括電極材料的選擇、系統電極架構、電極與仿體或目標物間的匹配問題與頻率的影響。其中,我們發現不鏽鋼材質為較佳的電極材料,非對稱電極架構有較好的加熱效果,而在較高的頻率會有較好的聚焦效果,這些都可提供未來實現此系統的重要依據。為了達成在有活體循環散熱的效果下仍能達到攝氏41度的加熱且範圍可以超過針狀電極附近1立方公分大小的初步的目標,在第四章中,我們評估了熱場分佈,並改善實驗環境與非對稱電極架構後,以多針狀電極在攝氏37度恆溫封閉空間中,可將目標物加熱至攝氏41度且對低pH部份有更好的聚焦效果。 本研究已完成整個系統定性的部份,證實其臨床上實現的可行性,並找出影響系統效率的原因與參數,包括電極材料的選擇、系統電極架構、電極與仿體或目標物間的匹配問題與頻率的影響。這些結論都可提供未來發展此系統的重要依據。 ; Circulatory diseases have long been the main causes of mortality in developed countries and also the cancer is the first causes of mortality. The study is to research and develop the hyperthermia therapy micro-electrode system which could focus on the low pH location. The system can make up the defect of other therapy by heating the low pH cancer tissue selectively. The system also can promote the perfusion by heating local tissue to those poor circulation tissues. In this study we feel like to develop a new hyperthermia therapy system. Through the characters which are the lower pH quality in cancer cell, due to the lack of oxygen, also the low resistance in cancer cell [32], with combination of the basic electric theory. In chapter three, we bring up the system’s block diagram and the method of realization. We find out that the parameters and the causes of the influence in system including the choice of electrode, the structure of system, the matching problems between electrode and the target, and the frequency by using function generator and electrodes to apply a specific voltage to phantom. Among these parameters, we find out that the stainless steel is the better electrode material, and the asymmetric structure has better heating effect, and also with higher frequency we have better focusing effect. Such important basis can help us ...
نوع الوثيقة: thesis
وصف الملف: 5045204 bytes; application/pdf
اللغة: Chinese
English
العلاقة: [1] 行政院衛生署, “中華民國台灣地區九十一年衛生統計重要指標,” 2003. [2] E. Ben-Hur, B. V. Bronk, and M. M. Elkind, “Thermally Enhanced Radiosensitivity of Cultured Chinese Hamster Cells,” Nature:New Biology, vol. 238, pp. 209-211, 1972. [3] 李門輝, “癌的基礎科學,” 合記, 1987. [4] Engin K. “Biological Rationale And Clinical Experience With Hyperthermia,” Controlled Clinical Trials, 17, PP. 316-342, 1996. [5] Robert B. Roemer, “Engineering Aspects of Hyperthermia Therapy,” Annu. Rev. Biomed. Eng., pp. 349, 1999. [6] Gelfond ML, Mizgirev IV, Barchuk AS, “Selective Laser Hyperthermia of Malignant Neoplasms:Experimentl and Clinical Research,” ATC-Semiconductor Devices, Saint-Petersburg Russia, 2000. [7] Vrba J., Lapes M., Oppl L., “Technical aspects of microwave thermotherapy,” Bioelectrochemistry and Bioenergetics, 48, pp. 305-309, 1999. [8] “Radio frequency ablation”, http://www.surgery.usc.edu/divisions/hep/radiofrequencyablation.htmlTest [9] Gordon; Robert T., “Method for affecting intracellular and extracellular electric and magnetic dipoles”, 1988. [10] Diederich CJ, Hynyen K., “Ultrasound Technology For Hyperthermia,” Ultrasound In Med. & Biol., Vol. 25, No. 6, pp. 871-887, 1999. [11] Selawry, O., Goldstein, M., McCormick, T., “Hyperthermia in tissue cultured cells of malignant origin,” Cancer Res., 17, pp. 785-791, 1957. [12] Huth, E., “Die Rolle der bakteriellen infection bei spontanremission mailigner tumoren und leukosen,” Korpereigene Abwehr und bosartige Geschwultste, pp. 33-37, 1957. [13] Coley, W., “The treatment of malignant tumors by repeated inoculations of erysipelas-with a report of ten original cases,” Am. J. Med. Sci., 105, pp. 487-511, 1893. [14] Coley, W., “A report of recent cases of inoperable sarcoma successfully treated with mixed toxins of erysipelas and bacillus prodigious,” Surg. Gynecol. Obstet., 13, pp. 174-190, 1911. [15] Crile, G., “Selective destruction of cancers after exposure to heat,” Ann. Surg., 156, pp. 404-407, 414-416, 1962. [16] P. Burgman, A. Nussenzweig, G. C. Li, “Thermotolerance,” Thermoradiotherapy and Thermochemotherapy, Vol. 1, pp. 75-87, 1995 [17] Fessenden P, Hand JW., “Hyperthermia therapy pHysics,” Medical radiology: radiation therapy pHysics, Berlin: Springer-Verlag, pp. 315–363, 1995. [18] Seegenschmiedt MH, Fessenden P, Vernon CC, “Principles and practices of thermoradiotherapy and thermochemotherapy,” Berlin:Springer-Verlag, 1995. [19] Seegenschmiedt MH, Sauer R, Brady LW, Karlsson UL, “Techniques and clinical experience of interstitial thermoradiotherapy,” Interventional radiation therapy, techniques-brachytherapy, Berlin: Springer Verlag, pp.343–355, 1991. [20] Stauffer PR, Diederich CJ, Seegenschmiedt MH, “Interstitial heatingtechnologies,” Principles and practices of thermoradiotherapy and thermochemotherapy, Berlin: Springer-Verlag, pp.279 –320, 1995. [21] Dewey WC., “Arrhenius relationships from the molecule and cell to theclinic,” Int J Hyperthermia, 10, pp. 457– 483, 1994. [22] Overgaard J., “The current and potential role of hyperthermia in radiotherapy,” Int J Radiation Oncol Biol PHys, 16, pp. 537–549, 1989. [23] Gaber MH, Wu NZ, Hong K, Huang SK, Dewhirst MW, Papahadjopoulos D. “Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks,” Int J Radiat Oncol Biol PHys, 36, pp. 1177–1187, 1996. [24] Kakinuma K, Tanaka R, Takahashi H, Watanabe M, Nakagawa T, Kuroki M. “Targeting chemotherapy for malignant brain tumor using thermosensitive liposome and localized hyperthermia,” J Neurosurg, 84, pp. 180 –184, 1996. [25] Dewhirst MW. “Future directions in hyperthermia biology,” Int J Hyperthermia, 10, pp. 339 –345 1994. [26] Shen RN, Lu L, Kaiser HE, Broxmeyer HE. “Bio-immunotherapy for cancer in experimental studies and clinical application: current status and future challenges,” In Vivo, 8, pp. 643– 652, 1994. [27] Dewey WC. “Arrhenius relationships from the molecule and cell to the clinic,” Int J Hyperthermia, 10, pp. 457– 483, 1994. [28] Sapareto SA, Dewey WC. “Thermal dose determination in cancer therapy,” Int J Radiat Oncol Biol PHys, 10, pp. 787– 800, 1984. [29] Pearce J, Thomsen S. “Rate process analysis of thermal damage,” Optical-thermal response of laser-irradiated tissue, London: Plenum, pp. 561– 606, 1995. [30] Anhalt DP, Hynynen K, Roemer RB. “Patterns of changes of tumour temperatures during clinical hyperthermia: implications for treatment planning, evaluation and control.” Int J Hyperthermia, 11, pp. 425–36, 1995. [31] Dewhirst MW, Ozimek EJ, Gross J, et al, “Will hyperthermia conquer the elusive hypoxic cell?” Radiology, 137, pp. 811–17, 1980. [32] 王唯工, 陳義裕, 鮑建國, “穴診機制與量化之研究,” 國立台灣大學物理所, pp.69-76, 2003 [33] John G. Webster, “Medical instrumentation application and design,” John Wiley & Sons, Ins., pp. 624-649, 1998.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/53058Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/53058/1/ntu-93-R91921107-1.pdfTest
الإتاحة: http://ntur.lib.ntu.edu.tw/handle/246246/53058Test
http://ntur.lib.ntu.edu.tw/bitstream/246246/53058/1/ntu-93-R91921107-1.pdfTest
رقم الانضمام: edsbas.F2A8E553
قاعدة البيانات: BASE