يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"WAVE equation"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    رسالة جامعية
  2. 2
    رسالة جامعية

    المؤلفون: 阮泓斌, Juan, Hung-Bin

    المساهمون: 劉格非, 臺灣大學:土木工程學研究所

    وصف الملف: 3433373 bytes; application/pdf

    العلاقة: [英文] 1. Achenbach, J. D. (1973), Wave Propagation in Elastic Solids, Amsterdam: North-Holland Pub. Co 2. Albert, D.G. (1993). A comparison between wave propagation in water- saturated and air-saturated porous materials. Journal of Applied Physics 73, 28-36 3. Alan V. Oppenheim , Alan S. Willsky , with S. Hamid Nawab,Signals and Systems (2nd Edition) 4. C.C. Mei,The Applied Dynamics of Ocean Surface Waves。 5. Das,“Principle of soil dynamics” 6. Graff K F. Wave motion in elastic solids 7. Graves,R.W.(1996).Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , Bull. Seism. Soc. Am.,86,1091-1106 8. Itakura et al. (2006 ) A Field-Experimental Report of Debris-Flow Monitoring by the Acoustic Sensor ) 9. M.F. McCarthy and M.A. Hayes ,Elastic wave propagation 10. Miklowitz,The theory of elastic waves and waveguides 11. Miller G F,Pursey H. “On the partition of energy between elastic waves in a semi-infinite solid”,[J].Proc R Soc London A,1955,233(1192):55-69 12. Rao,Applied numerical methods for engineers and scientist 13. (2001),On the Interaction of Elastic Waves with Buried Land Mines: an Investigation Using the Finite-Difference Time-Domain Method. 14. Virieux,J. ,1984,SH wave propagation in heterogeneous media: velocity-stress finite-difference method : Geophysics,49,1933-1957 15. Virieux,J. ,1986,P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method : Geophysics,51,889-901 16. Soils and Geology Procedures for Foundation Design of Buildings and Other Structures (Except Hydraulic Structures) (chap 17) 17.Geological society of America special paper—No.36,1942 18.Numerical Recipes in Fortran 77, Second Edition (1992) [中文] 1.李全發,(1983),「打樁引致之地表震動與鄰房耐震診斷」,國立成功大學建築研究所碩士論文。 2.張獻宗,(1987),「移動聲源所產生之聲波在固基層狀之意體介質中的傳播現象」,國立台灣大學應用力學研究所碩士論文。 3.李艮生,(1998),「三維層狀介質暫態彈性波傳的理論解析、計算及實驗」,國立台灣大學機械工程學研究所博士論文。 4.李欣輯,(2000),「地聲探測器應用於土石流預警」,國立台灣大學土木學系研究所碩士論文。 5.黃清哲等(2004),「以地聲檢知器探測土石流發生之研究第一年期末報告」,九三年度科技計畫。 6.陳育翔(2004),「利用地聲探測器探討土石流地聲之特性」,國立成功大學碩士論文。 7.黃登賢,(2004),「三維點源地聲傳遞的理論解析與初步實驗」,國立台灣大學土木學系研究所碩士論文。 8. 張婉真,2005,地聲檢知器複式探測之研究,國立台灣大學土木學系研究所碩士論文。 9. 林齊禹,(2006),利用能量積分變化法分析土石流運動之特性,國立台灣大學土木學系研究所碩士論文。; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/50309Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/50309/1/ntu-96-R94521301-1.pdfTest

  3. 3
    رسالة جامعية

    المؤلفون: 謝力文, Hsieh, Li-Wen

    المساهمون: 陳琪芳, 臺灣大學:工程科學及海洋工程學研究所

    وصف الملف: 2945079 bytes; application/pdf

    العلاقة: 1 Lee, D., Saad, Y., and Schultz, M. H. (1988) "An Efficient Method for Solving the Three-dimensional Wide Angle Wave Equation," in COMPUTATIONAL ACOUSTICS-Wave Propagation, eds. D. Lee, R. L. Sternberg, and M. H. Schultz, North-Holland, Amsterdam, pp. 75–90. 2 Lee, D., Nagem, R.J., Teng, Y.-C., and Li, G. (1996) "A Numerical Solution of Parabolic Elastic Wave Equations," in Theoretical and Computational Acoustics ‘95, eds. D. Lee, Y.-H. Pao, M.H. Schultz, and Y.-C. Teng, World Scientific Pub. Co., Singapore. 3 Achenbach, J.D. (1987) Wave Propagation in Elastic Solids, North-Holland. 4 Shang, E.-C., and Lee, D. (1989) "A Numerical Treatment of the Fluid/Elastic Interface Under range-dependent Environments," J. Acoust. Soc. Am., Vol. 85(2), pp. 654–660. 5 Botseas, G., Lee, D., and King, D. (1987) "FOR3D: A Computer Model for Solving the LSS Three-dimensional Wide Angle Wave Equation," U.S. Naval Underwater Systems Center, TR 7943. 6 Lee, D., Nagem, R.J., Resasco, D.C., and Chen, C.-F. (1998) "A Coupled 3D Fluid/solid Wave Propagation Model: Mathematical Formulation and Analysis," Applicable Analysis, Vol. 68, pp. 147–178. 7 Sheu, T.W.-H., Chen, S.-C., Chen, C.-F., Chiang, T.-P. and Lee, D. (1999) "A Space Marching Scheme for Underwater Wave Propagation in Fluid/solid edia," J. Comput. Acoust., Vol. 7, No. 3, pp. 185–206. 8 Lee, D., Nagem, R.J., and Resasco, D.C. (1997) "Numerical Computation of Elastic Wave equations," J. Comput. Acoust., Vol. 5, No. 2, pp. 157–176. 9 Nagem, R.J. and Lee, D. (2002) "Coupled 3D Wave Equations with Fluid/solid Interface: Theoretical Development," J. Comput. Acoust., Vol. 10, No. 4, pp. 431–444. 10 http://web.nps.navy.mil/~kbsmith/SWAM99/swam99.htmlTest 11 Borejko, P., Chen, C.-F., and Pao, Y.-H. (2001) "Application of the Method of Generalized Rays to Acoustic Waves in a Liquid Wedge over Elastic Bottom," Journal of Computational Acoustics, Vol. 9, No. 1, pp. 41–68. 12 Lee D. and Schultz, M.H. (1995) Numerical Ocean Acoustic Propagation in Three Dimensions, World Scientific, Singapore. 13 Chen, C.-F., Lin, Y.-T., and Lee, D. (1999) "A Three-dimensional Azimuthal Wide-Angle Model for the Parabolic Wave Equation," J. Comput. Acoust., Vol. 7, No. 4, pp. 269–286. 14 Lee, D., Botseas, G., and Siegmann, W.L. (1992) "Examination of Three-dimensional Effects Using A Propagation Model with Azimuth-coupling Capability (FOR3D)," J. Acoust. Soc. Am., Vol. 9(6), pp. 3192–3202. 15 Porter, M.B., Jensen, F.B., and Ferla, C.M. (1991) "The problem of energy conservation in one-way models," J. Acoust. Soc. Am., 89(3), pp. 1058–1067. 16 Schurman, I.W., Siegmann, W.L., and Jacobson, M.J. (1991) " An energy-conserving parabolic equation incorporating range refraction," J. Acoust. Soc. Am., 89(1), pp. 134–144. 17 Collins, M.D. (1993) "An energy-conserving parabolic equation for elastic media," J. Acoust. Soc. Am., 94(2), pp. 975–982. 18 Godin, O.A. (1999) "Reciprocity and energy conservation within the parabolic approximation," Wave Motion, Vol. 29, No. 2, pp. 175–194. 19 Mikhin, D. (2001) "Energy-conserving and reciprocal solutions for higher-order parabolic equations," J. Comput. Acoust., Vol. 9, No. 1, pp. 183–203. 20 Billingham, J. and King, A.C. (2000) Wave Motion, Cambridge University Press, Cambridge. 21 Beyer, R.T. (Editor-in-Chief) (1993) AIP Series in Modern Acoustics and Signal Processing, Springer-Verlag, New York. 22 Tolstoy, I. (1973) Wave Propagation, McGraw-Hill. 23 Brekhovskikh, L.M. and Lysanov, Yu.P. (2003) Fundamentals of ocean acoustics, 3rd ed., Springer-Verlag, New York. 24 Caruthers, J.W. (1976) Fundamentals of Marine Acoustics, Elsevier. 25 Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (2000) Fundamentals of Acoustics, 4th ed., John Wiley & Sons. 26 Frisk, G.V. (1994) Ocean and seabed acoustics: a theory of wave propagation, P T R Prentice-Hall. 27 Jensen, F.B., Kuperman, W.A., Porter, M.B. and Schmidt, H. (2000) Computational ocean acoustics, Springer-Verlag, New York. 28 Pierce, A.D. (1989) Acoustics: An Introduction to Its Physical Principles and Applications, American Institute of Physics, New York. 29 Etter, P.C. (1996) Underwater Acoustic Modeling: Principles, techniques and applications, 2nd ed., E & FN Spon, London. 30 Akal, T. and Berkson, J.M. (eds.) (1986) Ocean Seismo-Acoustics (Low-Frequency Underwater Acoustics), NATO Conf. Series IV, Marine Sciences, Vol. 16, Plenum, New York. 31 Bell, T.G. (1962) Sonar and Submarine Detection, U. S. Navy Underwater Sound Lab. Rep. 545. 32 Lindsay, R.B. (ed.) (1972) Acoustics—Historical and Philosophical Development, Dowden, Hutchinson & Ross, Stroudsburg, PA. 33 Lasky, M. (1977) Review of Undersea Acoustics to 1950, J. Acoust. Soc. Am., Vol. 61, No. 2, pp. 283–297. 34 Wilson, M. (1954) American Science and Invention, Bonanza, pp. 108–113. 35 Urick, R.J. (1993) Principles of Underwater Sound, 3rd ed., McGraw-Hill, New York. 36 Weston, D.E. and Rowlands, P.B. (1979) Guided acoustic waves in the ocean. Rep. Prog. Phys., Vol. 42, pp. 347–387. 37 DiNapoli, F.R. and Deavenport, R.L. (1979) Numerical models of underwater acoustic propagation, in Ocean Acoustics, Topics in Current Physics, Vol. 8, ed. J. A. DeSanto, Springer-Verlag, New York, pp. 79–157. 38 Merklinger, H.M. (ed.) (1987) Progress in Underwater Acoustics, Proc. Twelfth International Congress on Acoustics Associated Symposium on Underwater Acoustics, July 16–18, 1986, Halifax, Nova Scotia, Canada, Plenum Press, New York. 39 Lee, D., Sternberg, R.L., and Schultz M.H. (eds.) (1988) Computational Acoustics, Vol. 1: Wave Propagation, Proc. 1st IMACS Symposium on Computational Acoustics, August 6–8, 1986, New Haven, CT, USA, North-Holland, Amsterdam. 40 Lee, D., Sternberg, R.L., and Schultz M.H. (eds.) (1988) Computational Acoustics, Vol. 2: Algorithms and Applications, Proc. 1st IMACS Symposium on Computational Acoustics, August 6–8, 1986, New Haven, CT, USA, North-Holland, Amsterdam. 41 Lee, D., Cakmak, A., and Vichnevetsky, R. (eds.) (1990) Computational Acoustics, Vol. 1: Ocean-Acoustic Models and Supercomputing, Proc. 2nd IMACS Symposium on Computational Acoustics, March 15–17, 1989, Princeton, NJ, USA, North-Holland, Amsterdam. 42 Lee, D., Cakmak, A., and Vichnevetsky, R. (eds.) (1990) Computational Acoustics, Vol. 2: Scattering, Gaussian Beams, and Aeroacoustics, Proc. 2nd IMACS Symposium on Computational Acoustics, March 15–17, 1989, Princeton, NJ, USA, North-Holland, Amsterdam. 43 Lee, D., Cakmak, A., and Vichnevetsky, R. (eds.) (1990) Computational Acoustics, Vol. 3: Seismo-Ocean Acoustics and Modeling, Proc. 2nd IMACS Symposium on Computational Acoustics, March 15–17, 1989, Princeton, NJ, USA, North-Holland, Amsterdam. 44 Lee, D., Vichnevetsky, R., and Robinson, A.R. (eds.) (1993) Computational Acoustics, Vol. 2: Acoustic Propagation, North-Holland, Amsterdam. 45 Lau, R.L., Lee, D., and Robinson, A.R. (eds.) (1993) Computational Acoustics, Vol. 1: Scattering, Supercomputing and Propagation, North-Holland, Amsterdam. 46 Harrison, C.H. (1989) “Ocean propagation models,” Appl. Acoust., Vol. 27, pp. 163–201. 47 McCammon, D.F. (1991) “Underwater acoustic modeling,” Sea Technology, Vol. 32, No. 8, pp. 53–55. 48 Buckingham, M.J. (1992) “Ocean-acoustic propagation models,” J. Acoustique, No. 3, pp. 223–287. 49 Porter, M.B. (1993) “Acoustic models and sonar systems,” IEEE J. Oceanic Engr., Vol. 18, pp. 425–437. 50 Dozier, L.B. and Cavanagh, R.C. (1993) Overview of selected underwater acoustic propagation models, Office of Naval Research, Advanced Environmental Acoustic Support Program, OALM Rept. 93-101. 51 Jensen, F.B. and Krol, H. (1975) The use of the parabolic equation method in sound propagation modeling, SACLANT ASW Res. Ctr., Memo. SM-72. 52 Lee, D., Pierce, A.D., and Shang, E.-C. (2000) “Parabolic equation development in the twentieth century,” J. Comput. Acoust., Vol. 8, No. 4, pp. 527–637. 53 Lee, D. (1984) The state-of-the-art parabolic equation approximation as applied to underwater acoustic propagation with discussions on intensive computations, Naval Underwater Systems Center TR No. 7247. 54 Scully-Power, P.D., and Lee, D. (eds.) (1984) Recent progress in the development and application of the parabolic equation, US naval underwater Systems Center TR No. 7145. 55 Ames, W.F., and Lee, D. (1987) “Current development in the numerical treatment of ocean acoustic propagation,” J. Appl. Numer. Math., Vol. 3(1-2), pp. 25–47. 56 Brekhovskikh, L.M., and Godin, O.A. (1992) Acoustics of Layered Media II – Point Source and Bounded Beams, Springer-Verlag, Berlin. 57 Lee, D., and Pierce, A.D. (1995) “Parabolic equation development in recent decade,” J. Comput. Acoust., Vol. 3, No. 2, pp. 95–173. 58 Tappert, F.D. (1977) “The parabolic equation approximation method,” in Wave Propagation and Underwater Acoustics, eds. J.B. Keller and J.S. Papadakis, Lecture Notes in Physics, Vol. 70, Springer-Verlag, Heidelberg, pp. 224–287. 59 Hardin, R.H., and Tappert, F.D. (1973) Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM Rev., Vol. 15, 423. 60 Spofford, C.W. (1973) A synopsis of the AESD Workshop on Acoustic-Propagation Modeling by Non-Ray-Tracing Techniques, May 22–25, 1973, Washington, D.C., Acoustic Environmental Support Detachment, Off. Nav. Res. Tech. Note TN-73-05. 61 Lenotovich and Fock, V. (1946) “Zh. Eksp. Teor. Fiz.,” J. Phys. USSR, Vol. 10, pp. 13–24. 62 Fock, V.A. (1965) Electromagnetic Diffraction and Propagation Problems, Pergamon Press. 63 Perkins, J.S., Baer, R.N., Wright, E.B., and Roche, L.F. (1982) Solving the parabolic equation for underwater acoustic propagation by the split-step algorithm, Van. Res. Lab., Rept. 8607. 64 Bucker, H.P. (1983) “An equivalent bottom for use with the split-step algorithm,” J. Acoust. Soc. Am., Vol. 73, pp. 486–491. 65 Lee, D., Botseas, G., and Papadakis, J.S. (1981) “Finite-difference solution to the parabolic wave equation,” J. Acoust. Soc. Am., Vol. 70, pp. 795–800. 66 Robertson, J.S., Arney, D.C., Jacobson, M.J., and Siegmann, W.L. (1989) “An efficient enhancement of finite-difference implementations for solving parabolic equations,” J. Acoust. Soc. Am., Vol. 86, pp. 252–260. 67 Lee, D., and Papadakis, J.S. (1980) “Numerical solutions of the parabolic wave equation: An ordinary-differential-equation approach,” J. Acoust. Soc. Am., Vol. 68, pp. 1482–1488. 68 Lee, D., and McDaniel, S.T. (1987) Ocean acoustic propagation by finite difference methods, Comp. Maths Applic., Vol. 45(5), special hardcover issue, published by Pergamon, New York (1988). 69 Collins, M.D. (1988) FEPE user’s guide, Nav. Ocean Res. And Devel. Activity, Tech. Note 365. 70 Perkins, J.S., Baer, R.N., Roche, L.F., and Palmer, L.B. (1983) Three-dimensional parabolic-equation-based estimation of the ocean acoustic field, Nav. Res. Lab., Rept. 8685. 71 Siegmann, W.L., Kriegsmann, G.A., and Lee, D. (1985) “A wide-angle three-dimensional parabolic wave equation,” J. Acoust. Soc. Am., Vol. 78, pp. 659–664. 72 Lee, D., Siegmann, W.L. (1986) “A mathematical model for the 3-dimensional ocean sound propagation,” Math. Modelling, Vol. 7, pp. 143–162. 73 Botseas, G., Lee, D., and Gilbert, K.E. (1983) IFD: Wide angle capability, Rep. TR-6905, Naval Underwater System Center, New London, CT. 74 Thomson, D.J. and Chapman, N.R. (1983) “A wide-angle split-step algorithm for the parabolic equation,” J. Acoust. Soc. Am., Vol. 74, pp. 1848–1854. 75 Lee, D. and Siegmann, W.L. (1993) A three-dimensional propagation model – FOR3D, Proc. Acoustics ’93, pp. 815–822. 76 Corones, J., DeFacio, B., and Krueger, R.J. (1982) “Parabolic approximation to the time-independent elastic wave equation,” J. Math. Phys., Vol. 23(4), pp. 577–586. 77 Landers, T. and Claerbout, J.F. (1972) “Numerical calculations of elastic waves in laterally inhomogeneous media,” J. Geophys. Res., Vol. 77, p. 1476. 78 McCoy, J.J. (1977) “A parabolic theory of stress wave propagation through inhomogeneous linearly elastic solids,” J. Applied Mech., Vol. 44, pp. 462–468. 79 Hudson, J.A. (1980) “A parabolic approximation for elastic waves,” Wave Motion, Vol. 2, pp. 207–214. 80 McDaniel, S.T. and Lee, D. (1982) “A finite-difference treatment of interface conditions for the parabolic wave equation: The horizontal interface,” J. Aoucst. Soc. Am., Vol. 71(4), pp. 855–858. 81 Nagem, R.J., Lee, D., and Chen, T. (1995) “Modeling elastic wave propagation in the ocean bottom,” J. Math. Modeling and Scientific Computing, Vol. 2(4), pp. 1–10. 82 Collins, M.D. (1989) “A high-order parabolic equation for wave propagation in an ocean overlaying an elastic bottom,” J. Acoust. Soc. Am., Vol. 86(4), pp. 1459–1464. 83 Collins, M.D. (1993) “A two-way parabolic equation for elastic media,” J. Acoust. Soc. Am., Vol. 93(4), pp. 1815–1825. 84 Greene, R.B. (1985) “A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces,” J. Acoust. Soc. Am., Vol. 77(6), pp. 1991–1998. 85 Fung, Y.-C. (1994) A first course in continuum mechanics: for physical and biological scientists and engineers, 3rd ed., Prentice-Hall. 86 Fung, Y.-C. and Tong, P. (2001) Classical and Computational Solid Mechanics, World Scientific. 87 Love, A.E.H. (1944) The mathematical theory of elasticity, 4th ed., New York, Dover Publications. 88 Officer, C.B. (1958) Introduction to the Theory of Sound Transmission: With Application to the Ocean, McGraw-Hill, New York. 89 Bedford, A. and Drumheller, D.S. (1994) Introduction to elastic wave propagation, John Wiley & Sons, Chichester, England. 90 Thurston, R.N. (1969) “Definition of a Linear Medium for One-dimensional Longitudinal Motion,” J. Acoust. Soc. Am., Vol. 45, pp. 1329–1341. 91 Reismann, H. and Pawlik, P.S. (1980) Elasticity: Theory and applications, John Wiley & Sons, New York. 92 Sokolnikoff, I.S. (1964) Tensor Analysis: Theory and applications to geometry and mechanics of continua, John Wiley & Sons, New York. 93 Flügge, W. (1972) Tensor Analysis and Continuum Mechanics, Springer-Verlag, Berlin. 94 Tyldesley, J.R. (1975) An Introduction to Tensor Analysis: for engineers and applied scientists, Longman. 95 Atanackovic, T.M. and Guran, A. (1999) Theory of Elasticity for Scientists and Engineers, Birkhäuser, Boston. 96 Sokolnikoff, I.S. (1956) Mathematical theory of elasticity, McGraw-Hill, New York, p. 87. 97 Arfken, G.B. and Weber, H.J. (2001) Mathematical Methods for Physicists, 5th ed., Harcourt/Academic Press, San Diego. 98 Brekhovskikh, L.M. and Godin, O.A. (1990) Acoustics of Layered Media I – Plane and Quasi-Plane Waves, Springer-Verlag, Berlin. 99 Inman, D.J. (1996) Engineering Vibration, Prentice Hall, Englewood Cliffs. 100 Inlenburg, F. (1998) Finite Element Analysis of Acoustic Scattering, Springer-Verlag, New York. 101 Young, E.C. (1992) Vector and Tensor Analysis, 2nd ed., Marcel Dekker, Inc., New York. 102 Tannehill, J.C., Anderson, D.A., and Pletcher, R.H. (1997) Computational Fluid Mechanics and Heat Transfer, 2nd ed., Tayler & Francis, Washington, DC. 103 Farlow, S.J. (1982) Partial Differential Equations for Scientists and Engineers, John Wiley & Sons, Inc., Singapore. 104 Richardson, L.F. (1910) “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam,” Philos, Trans. R. Soc. London, Ser. A, Vol. 210, pp. 307–357. 105 Gardner, W.D. (1982) “The Independent Inventor,” Datamation, Vol. 28, pp. 12–22. 106 Mollenhoff, C.R. (1988) Atanasoff: Forgotten Father of the Computer, Iowa State University Press, Ames. 107 Gerald, C.F., and Wheatley, P.O. (1994) Applied Numerical Analysis, 5th ed., Addison-Wesley, U. S. A. 108 Smith, G.D. (1984) Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed., Brunel University. 109 Douglas, J. and Gunn, J.E. (1964) “A General Formulation of Alternating Direction Methods – Part I. Parabolic and Hyperbolic Problems,” Numer. Math., Vol. 6, pp. 428–453. 110 Keller, H.B. (1970) “A New Difference Scheme for Parabolic Problems,” Numerical Solutions of Partial Differential Equations, Vol. 2 (J. Bramble, ed.), Academic, New York. 111 Crank, J. and Nicolson, P. (1947) “A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations for the Heat-Conduction Type,” Proc. Cambridge Philos. Soc., Vol. 43, pp. 50–67. 112 Strang, G. (1986) Introduction to Applied Mathematics, Wellesley-Cambridge Press, Massachusetts, U. S. A. 113 Jeffrey, A. (2000) Handbook of Mathematical Formulas and Integrals, 2nd ed., Academic Press, San Diego. 114 Huang, D. (1988) “Finite element solution to the parabolic wave equation,” J. Acoust. Soc. Am., Vol. 84, pp. 1405–1413. 115 Collins, M.D. (1993) “A split-step Padé solution for the parabolic equation method,” J. Acoust. Soc. Am., Vol. 93, pp. 1736–1742. 116 Lee, D. and Preiser, S. (1978) “A class of nonlinear a-stable numerical methods for solving stiff differential equations,” J. Comp. Math. Appls., Vol. 4(1), pp. 43–51. 117 Lee, D., Schultz, M.H., Siegmann, W.L., and St. Mary, D.F. (1992) “A numerical marching scheme to compute scattering in the ocean,” J. Math. And Comp. in Simu., Vol. 34(6), pp. 525–540. 118 Lee, D. (1974) “Nonlinear multistep methods for solving initial value problems in ordinary differential equations,” Ph.D. dissertation, Polytechnic University of New York. 119 Gere, J.M. and Timoshenko, S.P. (1997) Mechanics of Materials, 4th ed., PWS Publishing Company, Boston. 120 Collins, M.D. (1992) “A self starter for the parabolic equation method,” J. Acoust. Soc. Am., Vol. 92, pp. 2069–2074. 121 Greene, R.R. (1984) “The rational approximation to the acoustic wave equation with bottom interaction,” J. Acoust. Soc. Am., Vol. 76, pp. 1764–1773. 122 Thomson, D.J. (1990) “Wide-angle parabolic equation solutions to two range-dependent benchmark problems,” J. Acoust. Soc. Am., Vol. 87, pp. 1514–1520. 123 Chen, C.-F., Lee, D., Hsieh, L.-W., and Wang, C.-W. (2005) “A discussion on the energy-conserving property of a three-dimensional wave equation,” J. Comput. Acoust., to appear in Vol. 13, No. 4. 124 Knopo, L. (1969) “Elastic wave propagation in a wedge," in Wave Propagation in Solids, ed. J. Miklowitz, The American Society of Mechanical Engineers, New York, pp. 3–43. 125 Jerzak, W., Siegmann, W.L., and Collins, M.D. (2005) “Modeling Rayleigh and Stoneley waves and other interface and boundary effects with the parabolic equation,” J. Acoust. Soc. Am., Vol. 117 (6), pp. 3497–3503. 126 Wang, C.-W. (1993) “Range-Dependent Acoustic Propagation in Shallow Water,” Ph.D. dissertation, State University of New York at Stony Brook. 127 Schmidt, H. (1987) “SAFARI: Seismo-acoustic fast field algorithm for range independent environments. user's guide.” SR 113, SACLANT ASW Research Centre, La Spezia, Italy. 128 Goh, J.T. and Schmidt, H. (1996) “A hybrid coupled wave-number integration approach to range-dependent seismo-acoustic modeling,” J. Acoust. Soc. Am., Vol. 100, pp. 1409–1420. 129 http://www.hlsresearch.com/oalibTest/ 130 Calvo, D.C., Collins, M.D., Dacol, D.K., and Lingevitch, J.F. (2004) “Parabolic equation techniques for propagation and scattering,” in Theoretical and Computational Acoustics 2003, eds. A. Tolstoy, Y.-C. Teng, and E.-C. Shang, World Scientific Publishing Co. Pte. Ltd., Singapore, pp. 16–28.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/51107Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/51107/1/ntu-94-F89525003-1.pdfTest