يعرض 1 - 10 نتائج من 14 نتيجة بحث عن '"Relative humidity"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: CHEN, CHIH-CHIEH, 陳志傑

    المساهمون: 職業醫學與工業衛生研究所, Institute of Occupational Medicine and Industrial Hygiene

    مصطلحات موضوعية: RELATIVE-HUMIDITY, GRAND-CANYON, LOS-ANGELES, GROWTH, DELIQUESCENCE, SIZE

    الوصف: Hygroscopic growth of particles of different sizes and the resultant size distribution changes were observed as a function of the relative humidity (RH). A particle generation device, RH module, and a Tandem Differential Mobility Analyzer system were set up to measure the particle size distributions under different RH conditions. Adopting Nafion as an RH adjusting module, the aerosol hygroscopic observations were successfully performed without the interference caused by blending sample stream with humidified air. The measured deliquescence humidity of model compounds, NaCl and (NH4)(2)SO4, agree with the theoretical values reported by other investigators. The particle growth factor is enhanced around the RH of 70%. In addition, particle size distribution behaves as two split groups of particles with the RH > 76%. The average growth factors of hygroscopic ambient particles in Taiwan are similar to those reported elsewhere. There are several hygroscopic salt compositions in ambient aerosols, (NH4)2SO4 is the most abundant one. Observed particle deliquescence behaviors showed limited alternation of organics on particle growth at higher RH. (C) 2003 Elsevier Science Ltd. All rights reserved.

    وصف الملف: application/

    العلاقة: ATMOSPHERIC ENVIRONMENT v.37 n.15 pp.2069-2075; http://ntur.lib.ntu.edu.tw/handle/246246/79907Test

  2. 2
    رسالة جامعية

    المؤلفون: 黃昭源, Huang, Chao-Yuan

    المساهمون: 臺灣大學: 機械工程學研究所, 蘇金佳

    الوصف: 隨著社會文明的進步,空調系統的使用已經成為了生活中不可或缺的物品。一般我們現在使用的冷氣機,其相對濕度的設定大多低於50%,對照台灣的氣候,其年平均濕度皆在70%以上,冷氣的濕度設定偏低了些。同時,如果能夠將設定的相對濕度提高,則更可以節省過多能源的消耗。透過本研究希望能夠說明,空調系統的溫濕度設定應該符合使用者的生理特性,同時,也希望說明擺放熱帶植物在室內做為減少自身水分散失是否真的有效果。 本研究使用黃金葛及幸運竹作為觀察對象,將其置入恆溫恆濕機內,藉由調整溫度、濕度的設定值,觀察植物失水量的多寡。而除了溫濕度的影響以外,葉片面積的大小也是影響水分散失多寡的重要因素。此外,還將比較不同植物間的失水差異。 實驗結果顯示,溫度越高、或是濕度越高的情況下,越有利於黃金葛與幸運竹的水分散失;葉片面積越大則散失量越高。但是在過於低溫的環境下,植物會發生凍傷的現象,影響水分散失的量。此外,低溫、低濕度的環境並不利於本實驗中的植物的蒸散作用的進行,因此擺放熱帶植物並無法有效的減少自身水分流失。當人們若是在長期待在冷氣房中,應該增加衣著覆蓋率,以減少直接暴露在外的皮膚表面積,進而減少皮膚水分的流失。因此,每個地區的人都有其適合的溫度濕度範圍,就如同黃金葛與幸運竹比較適合高溫高濕度的環境,而台灣地區人們適合的濕度範圍在50%~70%之間。而在相對濕度越高的環境,其能源消耗的量也越小。 ; With the progress of social civilization, the air conditioning systems have become essential items in life. Generally, the relative humidity setting of air-conditioners we using mostly control less than 50%. In the contrast, the average relative humidity of Taiwan is more than 70% throughout the year. So, the relative humidity setting of air-conditioners is lower than the demand which people living in Taiwan need. If we could increase the relative humidity setting of air-conditioners, then we could save much energy from waste. The objective of this study is to provide experimental data to explain the regulation of air-conditioners should be designed case by case, so that it can meet the user’s thermal comfort. Put the Epipremnum aureum and Dracaena sanderiana into a machine that could control temperature and humidity inside the chamber. By changing the temperature and humidity, we could investigate the amount of water loss of plants. Moreover, the size of leaf area is an important factor toward the amount of water loss. Finally, we will compare the amount difference of water loss between the two plants. The experimental results show that the amount of water loss of the two plants is proportional to temperature、humidity and the leaf area. When the plants are in the too cold condition, frostbite will occur, and affecting the amount of water loss. If people live in air-conditioned room for a long time, we should increase the rate ...

    وصف الملف: 2917228 bytes; application/pdf

  3. 3
    رسالة جامعية

    المؤلفون: 彭思塽, Peng, Sz-Shung

    المساهمون: 臺灣大學: 工程科學及海洋工程學研究所, 宋家驥

    الوصف: 本實驗利用超音波霧化增濕有設備體積小、霧化霧滴緻密增濕均勻、易補水等優點,開發出ㄧ套超音波霧化系統,包含反應氣體加溫器、功率超音波霧化器以及超音波增濕瓶,並將模糊滑動平面控制理論與功率超音波霧化器結合。 有別於一般加濕方法無法主動式控制濕度,本實驗藉由所開發出的超音波霧化系統可自動調整霧化器驅動電壓進而改變霧化量,隨著霧化量的上升與減少,氣體的相對濕度也能即時變化,進而控制相對濕度。 在能控制相對濕度後,本實驗將相對濕度與質子交換膜燃料電池之電流密度輸出這兩者參數納為模糊化輸入,透過模糊滑動平面理論,計算出ㄧ理想模糊化輸出值,再應用於質子交換膜燃料電池的電流輸出端。實驗結果發現,在有納入控制機制的超音波霧化系統之下,能明顯改善未加入控制機制的超音波霧化系統造成質子交換膜燃料電池電流密度震盪與衰減的情形。 ; This paper takes advantage of using ultrasonic atomizer devices is small, atomized droplets densification and humidifier uniformly, easy to supply water, and develops an ultrasonic atomization system, reaction gas heater, power ultrasonic atomizer and ultrasonic atomization bottle. Besides, combine fuzzy sliding surface control theory with power ultrasonic atomizer. It’s different from the general humidifier which can’t control humidity proactively. The ultrasonic atomization system developed by this paper can automatically adjust atomizer driving voltage to change amount of atomization, with increase and decrease of amount of atomization , the relative humidity of gas can also changes immediately, so that we can control relative humidity. After we can control relative humidity , this paper takes relative humidity and PEMFC current density output into fuzzy input according to fuzzy sliding surface control theory to calculate an ideal fuzzy output and applied to the current output of proton exchange membrane fuel cell then. It was observed that we can improve the oscillation and decrease too much of PEMFC output with ultrasonic atomization system control mechanism compared to without control mechanism.

    وصف الملف: 140 bytes; text/html

  4. 4
    رسالة جامعية

    المؤلفون: 鄭心瑜, Cheng, Hsin-Yu

    المساهمون: 臺灣大學: 機械工程學研究所, 蘇金佳

    الوصف: 台灣位處亞熱帶,氣候特徵為高溫多雨,全年平均相對濕度皆在70-90%之間,濕熱的環境使得冷氣幾乎成為家家戶戶必備電器。然而,我們自歐美國家引用的空調設備,其相對濕度設定大多低於50%,以台灣高溫高濕的氣候型態而言,實在不需要設定這麼低的相對濕度。本研究希望藉由具體數據說明國內空調系統規範之瑕疵,因地制宜,不僅達到人體舒適,同時符合節能減碳的國際趨勢。 本研究使用木瓜、奇異果及蘋果置入恆溫恆濕箱內,模擬人處於空調環境的情況,藉由調整溫、濕度設定值,觀察失水量的多寡及失水速率的快慢。另外,表面積也是很重要的因素,以單位體積的表面積作為實驗參數之一,並比較不同種類水果間的失水差異。 實驗結果顯示,表面積愈大、溫度愈高、相對濕度愈低,水分散失量愈大,散失速率愈快。當相對濕度從30%提高到45%,在25℃條件下,可減少13.67%的熱能消耗,30℃則可減少24.80%;當相對濕度從45%提高到70%,25℃時可減少14.96%熱能消耗,30℃則可減少22.27%。由此可見,若是將國內空調設備的相對濕度設定在國人習慣的50%-70%,不僅可增加熱舒適度,更能大幅節省能源。 ; The relative humidity of Taiwan is between 70-90% throughout the year. People living in Taiwan are used to a 50-70% humidity. However, the relative humidity of air-conditioning facilities are usually under 50%, which are not suitable for Taiwan’s climate. The objective of this study is to provide experimental data to explain the flaws of the regulations of Taiwan’s air-conditioning systems. Put papaya, kiwi, and apple into the temperature and humidity chamber to simulate the condition of people staying in air-conditioned space. Then investigate the amount and rate of water loss of the fruits under various temperature and relative humidity. The experimental results show that lager surface area, higher temperature and lower relative humidity lead to more and faster water loss. When the relative humidity increases from 30% to 45%, energy consumption can be reduced by 13.67% under 25℃ and 24.80% under 30℃; when the relative humidity increases from 45% to 70%, energy consumption can be reduced by 14.96% under 25℃ and 22.27% under 30℃. Therefore, set relative humidity for a higher value can not only improve thermal comfort but also save a lot of energy.

    وصف الملف: 5120666 bytes; application/pdf

  5. 5

    المؤلفون: 李淑娟, Lee, shu-Chuan

    المساهمون: 臺灣大學: 高分子科學與工程學研究所, 林金福

    الوصف: 本研究將未改質過的石墨在硫酸與強氧化劑過錳酸鉀參與環境下,氧化形成氧化石墨片,再與聚乙烯醇水溶液混合形成均勻溶液後,直接倒入塑膠培養皿烘乾成膜,成功製備出聚乙烯醇與氧化石墨片的複合材料。由X光繞射圖譜中可以發現氧化石墨片以脫層結構的方式存在在高分子基材裡面。其玻璃轉移溫度會因加入氧化石墨片使得分子鏈段難移動而有所上升,但添加量變多反而又呈現下降的趨勢,可能是因為過量的氧化石墨片在高分子基材中分散性變差了。我們選用兩種不同分子量的聚乙烯醇,將試片置於20% RH、60% RH、80% RH三種不同的相對濕度下,藉由拉伸實驗來測定機械性質,比較分子量大小與不同相對濕度間結果的差異。加入氧化石墨片後,其楊式模數都有提升。其中高分子量的聚乙烯醇在相對濕度為80% RH下表現出優異的延展性,極限應變為1275.5%,添加1wt%的氧化石墨片下,其極限應變也可達968.2%。 我們更進一步將其應用在質子交換膜上,加入聚磺酸化苯乙烯於上述膜材中提供質子傳導途徑,選用戊二醇當交聯劑,對所製備的膜材進行質子傳導度、甲醇滲透率和吸水飽和率進行研究。本研究成功地利用氧化石墨片的添加大幅降低甲醇滲透率,結果交聯前的聚乙烯醇/3wt%的氧化石墨片下,選擇性為3.36×103 Ss/cm,比起Nafion117(2.55×103 Ss/cm)的表現還要優異。 ; In this thesis, graphite oxide was prepared from the natural graphite powder through the Hummer’s method, by which the unmodified graphite was treated with sulfuric acid and potassium permanganate to prepare the water-soluble graphite oxide. 10 wt% of poly(vinyl alcohol) (PVA) in aqueous solution was then mixed with graphite oxide in various concentrations to form a homogeneous solution. The well-mixed solutions were cast onto plastic petri dishes and dried in an oven. The polymer membranes were successfully fabricated by solution casting method. The exfoliated morphology was confirmed by the X-ray diffraction patterns. For the PVA/graphite oxide membrane, the glassy transition temperature was increased with the content of graphite oxide and then decreased as the graphite oxide restacked due to the van der Waals attraction of the nanoplatelets. The mechanical properties of composite films have been investigated for the PVA/graphite oxide membranes with two different molecular weight (Mw=20,000?30,000 and Mw=88,000), which have been conditioned at 20% RH(relative humidity),60% RH and 80% RH. It is obvious that the addition of graphite oxide into the polymer matrix has a significant influence on the mechanical behavior. The ultimate strain of PVA film of high molecular weight at 80%RH reached 1275.5%. It was only decreased to 968.2% for the nanocomposite containing 1 wt % graphite oxide, indicating that the nanocomposite membrane is still highly ...

    وصف الملف: 6635489 bytes; application/pdf

  6. 6
    رسالة جامعية

    المؤلفون: 林沛慧, Lin, Pei-Hui

    المساهمون: 林嘉明, Lin, Jia-Ming, 臺灣大學:環境衛生研究所

    الوصف: 近年來,室內裝潢大量使用塑化建材,可能是病態大樓症候群(sick building syndrome, SBS)的危險因子之一。研究指出添加於塑膠中以增加其柔軟性及使用性的塑化劑,經微生物分解後會產生2-乙基己醇(2-ethyl-1-hexanol, 2-ethylhexanol, 2EH),而相對濕度(relative humidity, RH)為影響化合物自建材逸散及微生物生長的重要變項。因此,本研究之目的為探討塑化建材、真菌及相對濕度間互動產生2-乙基己醇及其他化合物之關係。 研究採用田口氏實驗設計法(Taguchi method),設塑化建材、真菌及相對濕度為變項,每個變項有三個水準,組合成9個試驗組。各組試驗均在20 mL取樣瓶內進行,內置塑化建材,真菌培養於建材,相對濕度則利用飽和鹽類溶液調控。樣品採集於第1天、第4天、第7天、第10天及第14天以polyacrylate纖維進行頂空固相微萃取(headspace solid phase microextraction, HS-SPME),隨後利用GC/FID分析化合物。2-乙基己醇及其他未知化合物則曾先行使用GC/MS定性。實驗數據處理使用Qualitek-4軟體進行變異數分析(ANOVA analysis)。 結果顯示2-乙基己醇僅在有地毯建材的試驗中可測得,且其濃度於14天內無明顯變化;而在壁布建材的試驗中可測得苯甲醛及苯乙酮兩種化合物,其生成量隨時間呈現遞減的趨勢。此三種化合物可在僅有塑化建材的試驗中測得,常於一天達最大量,且非顯著的微生物揮發性有機化合物(microbial volatile organic compounds, MVOCs)。ANOVA分析結果顯示塑化建材對2-乙基己醇、苯甲醛及苯乙酮生成的影響分別為47.71%-85.20%、90.72%-96.33%及90.18%-96.90%,相對濕度和真菌的影響則很小。 塑化建材為影響揮發性有機化合物(volatile organic compounds, VOCs)產生的決定因素,而化合物的物種則隨著建材性質而異。另外建議考慮將本研究的試驗系統及採樣分析方法作為室內建材使用前的快速篩選工具。 ; Plastics are often used as building materials and likely involving in sick building syndrome (SBS) in recent years. The previous studies proposed that plasticizers added to plastics for imparting flexibility and workability may be degraded to form 2-ethyl-1-hexanol (2-ethylhexanol, 2EH) by microorganisms. And relative humidity (RH) influences chemical emission from building materials and growth of fungi. In that, this study was focused on the yields of 2EH and other prominent compounds in association with plastic building materials, fungi, and RH. Taguchi Method was employed for experimental design to form nine trials where plastic building materials, fungi and RH were parameters and each parameter had three levels. The treatment for each trial was conducted in a 20 mL vial with functions of cultivation of microorganisms on plastic building materials and control of different RH by saturated salt solution. 2EH and other prominent compounds were sampled by headspace solid phase microextraction (HS-SPME) with polyacrylate fiber on days 1, 4, 7, 10 and 14. The samples were analyzed by GC/FID. The ...

    وصف الملف: application/pdf; 710741 bytes

  7. 7
    رسالة جامعية

    المؤلفون: 張照群, Chang, Chao-Chun

    المساهمون: 郭幸榮, 臺灣大學:森林環境暨資源學研究所

    الوصف: 本研究於台大實驗林溪頭營林區第二林班被插植麻竹的柳杉人工林分進行。試驗地於2005年砍伐散植的麻竹及整理藤蔓、雜草約1.8公頃,其後沿橫坡走向設置4條取樣帶,其中設立45個樣區,且於各樣區栽植青剛櫟(Cyclobalanopsis glauca)、狹葉櫟(Cyclobalanopsis stenophylloides)、三斗石櫟(Pasania ternaticupula)、栓皮櫟(Quercus variabilis)、瓊楠(Beilschmiedia erythropholia)及大葉釣樟(Lindera megaphylla)6種台灣原生闊葉樹種,每2個月觀察各樣區冠層開闊度的變化及所栽植苗木之生長表現。另於45個樣區中篩選設置11個微環境觀測站及10個種子播種區。微環境觀測站在試驗期間以連續性觀測光合作用有效輻射、氣溫、相對溼度、土壤溫度及土壤水勢5項因子。結果顯示冠層開闊度為影響陽光入射量的最主要因子,也影響日夜溫差、相對溼度和土壤溫差等微環境因子的變化。然土壤水勢並未受冠層開闊度的顯著影響。種闊葉原生樹種的發芽試驗顯示在林地的發芽率未顯著降低,但發芽速率則只有狹葉櫟未顯著延長,青剛櫟、川上氏石礫(Pasania kawakamii)、瓊楠及台灣雅楠(Phoebe formosana)4樹種則明顯延遲。各個樹種發芽當年的幼苗在不同冠層開闊度下皆有70%以上的存活率,且樣區間並無顯著差異。幼苗的當年生長量可能受種子所貯存的養分較多之影響,未受微環境因子及雜草競爭影響而改變,因此高生長及直徑生長量在不同開闊度下無明顯變化趨勢。植苗木中,青剛櫟、狹葉櫟及三斗石櫟的苗高及苗徑生長量皆隨日平均光量之上昇而增加,表示在此期間光量為影響生長的主要因子。三斗石櫟及瓊楠的高生長皆與日平均光量和土壤水勢的複因子效應建立良好相關性。而大葉釣樟的直徑生長則與土壤水勢有線性相關。 ; The study site was located at Chitou district, Experimental Forest, National Taiwan University. Ma bamboos was cleared from about 1.8 ha of the study site and then the seedlings of 6 native hardwood tree species, Ring-cupped oak, Arishan oak, Nanban tanoak, Chinese cork oak, Red bark slugwood and Large-leaved lindera were planted on each of 45 sampling points of 4 sampling regions along the traverse direction. The canopy openness and seedling growth were measured every 2 months. Eleven microenvironmental observatories and 10 germination plots were set up among sampling points. The microenvironmental observations included continuous photosynthetically active radiance, air temperature, relative humidity, soil temperature and water potential. The results showed that the amount of incident radiation was largely affected by canopy openness. Canopy openness also influenced other micro-environmental factors such as diurnal differences in air and soil temperature and relative humidity, but not water potential.he seed germination was tested for 5 native hardwood tree species, Ring-cupped oak, Arishan oak, Kawakami tanoak, Red bark slugwood and Taiwan phoebe. The germination rates did not differ between field germination plots and ...

    وصف الملف: application/pdf; 824074 bytes

  8. 8
    رسالة جامعية

    المؤلفون: 黃建賓, Huang, Chien-Ping

    المساهمون: 李慧梅, Lee, Whei-May, 臺灣大學:環境工程學研究所

    الوصف: 摘要 本研究目的為評估奈米碳管空氣負離子產生裝置在連續處理的狀況下對所選用的四種生物氣膠物種:E.coli、B.subtilis、C.famata、P.citrinum之控制效率,以了解空氣負離子對不同生物氣膠物種在控制效率上的差異性,並比較以沾附奈米碳管之不鏽鋼針尖與傳統不鏽鋼針尖放電產生空氣負離子對生物氣膠的控制效率上有何異同,並於不同相對濕度的條件下進行實驗,以了解相對濕度對空氣負離子控制生物氣膠的影響。 研究結果發現,沾附奈米碳管之不鏽鋼針尖可以在較低的放電電壓下即開始產生出高於室內濃度背景值的空氣負離子,但其所產生空氣負離子之濃度隨時間是呈現出不穩定且衰減的趨勢。增加不鏽鋼針尖產生空氣負離子之放電電壓,對其控制生物氣膠之效率會有明顯的提升;增加沾附奈米碳管之不鏽鋼針尖產生空氣負離子之放電電壓,對其控制生物氣膠之效率提升性則較不顯著。以不鏽鋼針尖在放電電壓為2.8kV與沾附奈米碳管之不鏽鋼針尖在放電電壓為1.8kV之下產生空氣負離子對本研究所選定的四種生物氣膠之控制效率由大到小為ηB.Subtilis ≒ηE.Coli > ηYeast ≒ηP.Citrinum.。使用不鏽鋼針尖產生空氣負離子控制生物氣膠時,相對濕度的影響非常重要,較小顆粒生物氣膠(E.Coli及B.Subtilis)而言,都是在RH=50%時有最佳的控制效率出現,而RH=30%時的控制效率比RH=70%時的控制效率好;對於較大顆粒的生物氣膠(Yeast及P.Citrinum)而言,空氣負離子對其控制效率皆是在RH=70%時有最佳控置效率,而使用沾附奈米碳管之不鏽鋼針尖產生空氣負離子控制生物氣膠時,相對濕度的改變對其控制效率的影響不明顯。以不鏽鋼針尖放電電壓2.8kV產生空氣負離子控制生物氣膠,其控制效率隨時間的變化關係大致維持在一個穩定的狀態。以沾附奈米碳管之不鏽鋼針尖放電電壓1.8kV產生空氣負離子對生物氣膠之控制效率是隨時間而呈現出衰減的狀態。 ; The purpose of this study was to evaluate control efficiency on bioaerosols, including E.coli、B.subtilis、C.famata(Yeast)、P.citrinum, by using negative air ion (NAI) which was produced on carbon nanotubes (CNTs). The effects of relative humidity were investigated in this study. Also, it compared the generation of NAI at a concentration of 7×105-1.2×106 ions cm-3 in experimental chamber (9.32×10-2 m3) by negative electric discharge with different discharge voltage on CNTs needle and conventional stainless steel needle.he results showed that the higher concentration of NAI was produced under lower discharging voltage on CNTs needle, but unstable and the NAI concentration decreased with time compared with stainless steel needle. The control efficiency of bioaerosols increased with discharge voltage of stainless steel needle,but it is not significant on CNTs needle. In general, the order of control efficiency on bioaerosols by NAI is ηB.Subtilis ≒ ηE.Coli > ηYeast ≒ ηP.Citrinum. When NAI generated by stainless steel needle, the best control efficiency of E.coli and B.subtilis were found at RH=50%, and the control efficiency under RH=30% is better than that at RH=70%. The best control efficiency of ...

    وصف الملف: application/pdf; 2871057 bytes

  9. 9
    رسالة جامعية

    المؤلفون: 賴政興, Lai, Zhang-Xing

    المساهمون: 張祖亮, 臺灣大學:園藝學研究所

    الوصف: 本試驗主要探討貯藏條件對伯利恆之星貯藏腐敗率及定植後生長與開花影響。取台大山地農場梅峰本場於2006年1月中旬採收之伯利恆之星(Ornithogalum saundersiae Bak.)種球作為試驗材料。種球先於簡易塑膠布溫室內曝曬六週,再置於13至15℃相對溼度35至45%冷藏庫內兩個月,於2006年五月份開始進行試驗。 伯利恆之星種球經10℃、15℃、20℃及25℃冷藏庫貯藏4、10及14週後顯示, 10℃貯藏10週後種球腐敗率為59.4%,14週後則為62.5%,應不適於貯藏。整體而言, 20℃貯藏者經14週貯藏後腐敗率仍為0%,為最佳貯藏溫度。 伯利恆之星種球經10℃、15℃、20℃及25℃貯藏4、10及14週貯藏後,經解剖觀察顯示,各溫度貯藏於14週內芽體皆為花芽型態。經30週貯藏後,20℃及25℃貯藏者即有60%消蕾,15℃貯藏者則無。各溫度處理貯藏34週之後皆有消蕾現象, 15℃貯藏者為20%。因此20℃及25℃貯藏時間僅適於14週以內,而15℃則為30及34週貯藏較佳之溫度。 伯利恆之星種球以10℃、15℃、20℃及25℃冷藏庫貯藏4、10及14週後,定植於台北、春陽及梅峰,調查生長及開花性狀。結果顯示經20℃及25℃貯藏後在葉片數或葉片長度平均生長速率均較10℃及15℃貯藏多及快。在開花率方面,開花率會隨著貯藏時間增加而逐漸下降。其中以貯藏14週後定植於梅峰者,開花率最低。整體而言,20℃貯藏14週內於各地區種植皆能維持ㄧ定開花率,而10℃貯藏者開花率最低。總小花數無論貯藏時間及種植地區皆以20℃貯藏後於台北地區種植者最多。整體而言,伯利恒之星開花所需天數會隨著貯藏溫度下降以及種植海拔高上升而增加,總小花數則會隨著貯藏溫度降低,貯藏時間增加及種植海拔高度上升而下降。 伯利恆之星種球依重量分為大(90-120 g)、中(60-90 g)及小(30-60 g)球後進行貯藏,觀查種球大小對伯利恆之星開花率及萌芽率的影響,結果顯示種球大小對萌芽率無影響。種球經貯藏14週後開花率依種球大小分別為75%、60%及40%,並且達到顯著差異。顯示伯利恆之星種球經14週貯藏後,開花率會隨著種球變小而下降。在花梗長度方面,種球大小與花梗長度無顯著差異,但有隨著種球變大而增長。而總小花數在試驗時間內皆以大球最佳。 UV-C照射處理方面,伯利恆之星種球經0 KJ/m2、0.5 KJ/m2、1 KJ/m2及2 KJ/m2 4種強度UV-C照射後,分別貯藏於10℃及15℃冷藏庫內。10℃處理組於貯藏14週時腐爛率已達80%,至30週已全部腐爛,但無發霉情形。15℃貯藏者於貯藏30週後無種球腐爛情形,但有種球乾枯現象,顯示UV-C照射於10℃貯藏溫度無法抑制種球腐敗。 伯利恆之星種球經481天長期貯藏後,經解剖觀察種球內芽體發育情形顯示花芽比率為60%、葉芽則為40%。2007年10月13日定植130顆種球於台大精密溫室,至2008年1月4日僅有5顆抽花梗,最早者於2007年11月3日開花,花梗長則為78㎝,其餘4花梗長分別為121㎝、102㎝、134.5㎝ 及97㎝ ,至2008年1月4日尚未開花。 ; This research was to study effect of storage condition on bulbs rotten rate during storage and the effect on growth and flowering rate after planting. The bulbs of Star-of-Bethlehem (Ornithogalum saundersiae Bak.) were harvested from Taiwan university Mei-Feng farm in the mid of January 2006, and dry in the sun in plastic greenhouse for six weeks, finally stored at 13-15℃, relative humidity 35-45% cool room for two months before experiment. tar-of-Bethlehem bulbs were stored at 10℃, 15℃, 20℃, and 25℃ respectively for 4, 10, and 14 weeks, the rotten rate at 10℃ after 10 weeks storage was 59.4% and 62.5% for 14 weeks storage , while rotten rate of 20℃ after 14 weeks storage were 0%, it shows that 10℃ is not the ...

    وصف الملف: application/pdf; 9541767 bytes

  10. 10
    رسالة جامعية

    المؤلفون: 林思瑩, Lin, Szu-Ying

    المساهمون: 李慧梅, 臺灣大學:環境工程學研究所

    الوصف: 現代人大部分的時間都處於室內環境,尤其是都市生活;因此,室內空氣品質與健康、舒適的生活息息相關,而生物氣膠即為影響室內空氣品質重要的因子之一。 本研究主要內容在探討使用光觸媒(PCO)、空氣負離子(NAI)及光觸媒結合空氣負離子(NAI/PCO)在不同相對濕度下對生物氣膠的控制效果。在生物氣膠方面,選擇了λ vir、E. coli、C. famata三種生物氣膠以釐清光觸媒及空氣負離子對三種生物氣膠控制效率的不同。 研究結果發現,在低相對濕度的環境下λ vir、C. famata的活性會受到影響,而對於E. coli就沒有顯著的影響;大致上,在各相對濕度下,三種控制方法的增進效率大小依序為ηenhanced,NAI/PCO > ηenhanced,NAI > ηenhanced,PCO,其中增進的效果以λ vir最佳,在相對濕度50%及70%時,ηenhanced,NAI/PCO,λ vir的平均值都達到34.2%;對E. coli及Yeast而言,在已開啟負離子的狀況下,再開啟光觸媒,對生物氣膠的控制並沒有幫助。 總控制效率的部分,E. coli的範圍約在30.7±5.0%之間,相對濕度的改變對各控制方法都沒有很顯著的影響;λ vir處理效率的範圍約在68.0±16.6%之間,控制效果受到相對濕度相當大的影響,相對濕度越高,控制效果越好;Yeast處理效率的範圍約在49.2±16.2%之間,隨著相對濕度越高,控制效率越低。以總控制效率的平均值而言,三種生物氣膠都呈現ηNAI/PCO/Filter > ηNAI/Filter > ηPCO/Filter的結果。本研究也發現,在相對濕度50%時,各生物氣膠的整體控制效果最佳。 ; Nowdays, people stay indoors most of time. This is especially ture for the residents in metropolitan. Therefore, the IAQ(Indoor Air Quality)has great impact on human health and comfortable life. Bioaerosols play an important role on IAQ. The purpose of this research was to evaluate bioaerosols control technology by the combination of photocatalytic oxidation (PCO) and negative air ions (NAI). To investigate the difference of the results of using PCO and NAI to control different bioaerosols, this research chose λ vir, E. coli and C. famata as the experimental bioaerosols. The results of this research show that the activity of λ vir and C. famata decreased in the lower relative humidity (RH) environment which is at 30% RH. But the effect of RH is not obvious to E. coli. In general, the enhanced efficiency in decreasing order is ηenhanced,NAI/PCO > ηenhanced,NAI > ηenhanced,PCO. The ηenhanced,NAI/PCO,λ vir is 34.2% when RH is 50% and 70%, which is the highest among all of the enhanced efficiency. However, there is no difference between ηenhanced,NAI/PCO and ηenhanced,NAI for both E. coli and Yeast. The results from control efficiency show that the range of ηE. Coli is 30.7±5.0% and the effect of RH is not obvious. The range of ηλ vir is 68.0±16.6%, and ηλ vir increased with RH. The ...

    وصف الملف: 2210238 bytes; application/pdf

    العلاقة: Altekruse, S. F., M. L. Cohen, and D. L. Swerdlow,” Emerging foodborne disease.” Emerg. Infect. Dis. 3, 285-293(1997) American Conference of Governmental Industrial Hygienists (ACGIH) “Threshold Limit Values and Biological Exposure Indices.”, Cincinnati, Ohio: ACGIH. Aoife P. Boyd, Guy R. Cornelis “Yersinia” Principles of Bacterial Pathogenesis, 227-264, Academic Press (2001) Bellante De Martiis, G., A. D’Arca Simonetti, G. Tarsitani, Vanini G.C., L’aria “indoor: la tutela della salute negli ambient confinati”. Igiene Monderna; 97; 705-706(1994) Burge, H.A., J.A. Otten, “Fungi” In: Macher, J.M., H.A. Ammann, H.A. Burge and D. Milton.(eds) Bioaerosol: assessment and control, Cincinnati, ACGIH, 19.1-13(1995). CDC “Salmonellosis: Frequently asked questions.” Centers for Disease Control and Prevention, http://www.cdc.gov/ncidod/diseases/submenus/sub_salmonella.htmTest(1998) Scherer, Christina A. and Samuel I. Miller “Molecular pathogenesis of Salmonellae”, Principles of Bacterial Pathogenesis, 265-333, Academic Press,(2001) Cover, T. L., and R. C. Aber, Yersinia enterocolitica: New Engl. J. Med. 321, 16-24(1989) Cox, C. S. “The Aerobiological Pathway of Microorganisms”, John Wiley & Sons, Chichester, xi(1987) D.R Harper, Molecular Virology, second edition, BIOS Scientific Publishers Limited(1998) Donham, J., P. Haglind, Y. Peterson, R. Rylander, L. Belin “Environmental and health studies of farm worers in Swedish swine confinement buildings,” British J. Ind. Med., 46, 31-37 (1989) Douwes, J., P. Thorne, N. Pearce, D. Heederic “Bioaerosol health effect and exposure assessment: Progress and prospects”, Ann. occup. Hyg., Vol. 47, No. 3, pp. 187–200(2003) Eduard, W., P. Sandven, F. Levy “Serum IgG antibodies to mold spores in two Norwegian sawmill populations: relationship to respiratory and other wor-related symptoms,” Am.J. Ind., 24, 207-222 (1993) ETV, “Test report of filtration efficiency of bioaerosols in HVAC systems- AAF International PerfectPleat Ultra”, GS10F0283K-BPA-1, EPA Task Order 1101, RTI Project No. 08787.001(2004) Fan, L., J. Song, P.D. Hildebrand, C.F. Forney “Interaction of ozone and negative air ions to control micro-organisms”, Journal of Applied Microbiology, 93 (1), 144–148. (2002) Fisk, J. W., A. H. Rosenfeld “Estimates of improved productivity and health from better indoor environments”, Indoor Air, 7, pp 158-172 (1997). Flannigan, B. “Air sampling for fungi in indoor environments,” Journal of Aerosol Science, 28, 381-392 (1997). Fox, A. M., M. T. Dulay ”Heterogeneous Photocatalysis”, Chem. Rev., 93, pp.341-357(1993) Fujishima, A., K. Honda “Electrochemical ph otolysis of water at a semiconducter electrode”, Nature, 238, pp.37-38(1972) Caneva, G., P. Mandrioli and C. Sabbioni, Cultural Heritage and Aerobiology, 3-29. Kluwer Academic Publishers. Printed in the Netherlands. (2003) Gregory, P.H., The microbiology of the atmosphere, 2nd ed. Leonard Hall, (1973) Gustavsson, J., “How can Air Filters Contribute to Better IAQ?” Filtration and Separation, V 36, n2, pp. 20-25 (1999) Hey Reoun An “Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples”, Atmospheric Environment, doi:10.1016/j.atmosenv.2006.07.020 (2006) Heyder, J., J. Gebhart, G. Rudolf, C.F. Schiller, W. Stahlhofen “Deposition of particles in the human respiratory tract in the size range 0.005-15 μm,” Journal of Aerosol Science, 5, 811-828 (1986) Hirst, J. M. “ Statutes of the British Aerobiology Federation, Aerobiology at Rothamsted Grana”, 33, 66(1994) Horrak, U., J. Salm, H. Tammet “Bursts of intermediate ion in atmospheric air.”, Geophys. Res., 103(D12), 13909-13915 (1998) http://www.cabri.org/CABRI/srs-doc/index.htmlTest http://www.nanosight.co.uk/applicationnotes/LambdaPhage.phpTest Ireland, J. C., P. Klostermann, E. W. Rice, R. M. Clark, “Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation, Appl. Environ. Microbial. 59,(5)pp.1668-1670(1993) Angulo-Romero, J. “Pathogenic and antigenic fungi in school dust of the south of Spain.”, Aerobiology, 49-65, Lewis Publishers(1996) Kellogg , E. W. III, M. G. Yost, N. Barthakur, A. P. Kreuger “Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus” , Nature, 281, 400 - 401 (1979) Kowasaki, W. J., Y. T. Choi, D. J. Seo, S. B. Park “Bactericidal effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus”, Ozone-Sci Eng., 20, 205-221 (1998) Krueger , A.P. “Biological impact of small ions”, Science, 193, 1209-1213 (1976) Kuo, Y. M., C. S. Li “Seasonal fungus prevalence inside and outside of domestic environment in the subtropical climate,” Atmospheric Environment, 28, No.19, 3125-3130 (1994) Lacey, J. “The aerobiology of conidial fungi”. In Biology of Conidial Fungi, G.T. Cole, B. Kendrick, eds; New York: Academic Press, 373-416 (1981) Lee, S., M. Naamura, S. Ohgai “Inactivation of phase Q beta by 254 nm UV light and titanium dioxide photocatalyst,” J Environ Sci Heal A, 33, 1643-1655 (1998) Li, C. S., P. S. Chen “Environmental bioaerosol monitering: Real-time quantitative PCR with gene probe, fluorochrome, and flow cytometry”, Institute of Environmental Health, College of Public Health, National Taiwan University.(2005) Li, C. S. and Y. C. Wang ” Inactivation Effects of Airborne Ozone for Bioaerosols”, J. Environ. Heal., submitted. (2005) Li, C. S. and Y. M. Wen “Control effectiveness of electrostatic precipitation on airborne microorganisms”, Aerosol Science and Technology, 37:933–938 (2003) Li, L. M., D. C. Sheu “Influences of Preparation Conditions on Bactericidal Efficacy of TiO2 Containing Coating” (2004) Liao, C. M., W. C. Luo, “Use of temporal/seasonal- and size-dependent bioaerosol data to characterize the contribution of outdoor fungi to residential exposures,” Science of the Total Environment, 347, 78-97 (2005) Licht, W. , Air pollution control engineering, 2nd edition, Marcel Dekker, Inc., New York and Basel (1988) Lin, C.H., C.S. Li, “Effectiveness of titanium dioxide photocatalyst filter for controlling bioaerosol,” Aerosol Sci. Technol, 37, 162-170 (2003) Luts, A. “Evolution of negative small ions at enhanced ionization.”, J. Geophys. Res., 100(D1), 1487–1496 (1995) Macher, J., Bioaerosols: assessment and control, American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio: ACGIH. (1999) Maness, P. C., S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, W. A. Jacoby “Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism” Appl. Environ. Microbial., 65,(9),pp.4094-4098(1999) Matsunaga, T., R. Tomoda, T. Nakajima, N. Nakamura, T. Komine “Continuous-Sterilization system that uses photosemiconductor powders”, Appl. Environ. Microbial. 54 pp. 1330-1333(1988) Matsunaga, T., R. Tomoda, T. Nakajima, H. Wake “Photo-Electrochemical sterilization of microbial cells by semiconductor powders”, FEMS Microbial. Lett.29:pp.211(1985) Melbosted, E., W. Eduard, A. Sogstad, P. Sandven, J. Lassen, P. Sostrand, K. Heldal, “Exposure to bacterial aerosol and work-related symptoms in sewage workers,” Am. J. Ind. Med., 25, 59-63 (1994) Michael B. A. Oldstone, Viruses, Plagues, and History, 125-186, New York Oxford University Press, Inc.(1998) Muilenberg, M. and H. Burge, Aerobiology, Lewis Publishers, Introduction(1996) Mitchell, B.W., J.K. King, “Effect of Negative Air Ionization on Airborne Transmission of Newcastle Disease Virus” Avian Diseases 38 pp.725-732 (1994) Morey, P. R., M. J. Hodgson, W. G. Sorenson, G. J. Kullman, W.W. Rhodes, G. S. Visvesvara “Environmental studies in moldy office buildings”, Div. of Respiratory Disease Studies, NIOSH, 399-419(1986) Nicholson, K.W., “The dry deposition of small particles: a review of experimental measurements” Atoms Environ, 22, 2653-2666 (1988) Micali,O., R. Montacutelli and Tarsitani ” Pathogenic microorganisms and situations of risk to man”, Cultural Heritage and Aerobiology, 31-43. Kluwer Academic Publishers. Printed in the Netherlands. (2003) Pasanen, A.L., “A Review: fungal exposure assessment in indoor environments,” Indoor Air., 11, 87-98 (2001) Perry, R. D. and J. D. Fetherston “Yersinia pestis: Etilogic agent of plaque.” Clin. Microbial. Rev. 10, 35-66(1997) Rajeshwar, K. “Photoelectrochemistry and the environment. Revs. of Appl. Electrochem. 44.pp.1067-1082(1995) Rambelli. A. “Fondamenti di micolgia. Bologna: Zanichelli”.(1981) Rengasamy, A., “Respiratory protection against bioaerosols: Literature review and research needs,” American Journal of Infection Control, 345-354 (2004). Reponen, T., A. Hyvarinen, J. Ruusanen, T. Raunemaa, A. Nevalainen, “Comparison of concentration and size distributions of fungal spores in buildings with and without mould problems,” 25, No. 8, 1595-1603 (1994). Richardson, G., S. A. Eick, D. J. Harwood, K. G. Rosen, F. Dobbs “Negative air ionization and the production of hydrogen peroxide.”, Atomospheric Environment, 37, 3701-3706( 2003) Saito, T., T. Iwase, J. Horie, T. Morioka ”Antibacterial effect of powdered TiO2 with Photocatalytic reaction on Streptococcus Mutan Strain AHT”, J. Dent. Health. 36, pp.490-491(1992) Sanden G., B. S. Fields, J.M. Barbaree, J.C. Feeley “Viability of Legionella pneumophila in chlorine-free waters at elevated temperatures”, Curr. Microbiol, No. 18, pp. 61-65.(1989) Shi, L., B. Chen, Y. Wang “Electret air filter used for getting rid of bacteria”,(ISE6)Proceedings, 6th International Symposium on Electrets, 549-522 (1988) Sigsgaard, T., P. Malmros, L. Nersting, C. Peterson “Respiratory disorders and atopy in Danish resource recovery worers,” Can. J. Microbiol, 1-24 (1992) Simeray, J., J. P. Chaumont, D. Leger “Seasonal variations in the airborne fungal spore population of the east of France(Franche-Comte). Comparison between urban and rural environment during two years.”, Aerobiologia; 9; 201-206 (1993) Skalny J. D., T. Mikoviny, S. Matejcik, N. J. Mason “An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air.”, International Journal of Mass Spectrometry, 233, 317-324, (2004) Spurr, R.A., H. Myers “Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer”, Anal. Chem. 29 pp 760-762 (1957). Stanley, R. G., H. F. Linskins, Pollen: biology, chemistry and management. Berlin: Springer-Verlag, (1974) Sunada, K., Y. Kikuchi, K. Hashimoto, A. Fujishima “Bactericidal and detoxification effects of TiO2 thin film photocatalysts”, Environmental Science & Technology 32. pp. 726-728(1998) Tauxe, R. V., J. Vandepitte, G. Wauters, S. M. Martin, V. Goossens, P. De Mol, R. Ven Noyen, G. Thiers ” Yersinia enterocolitica infections and pork: The missing link.” Lancet ii, 1129-1132(1987) Taylor, E.J., Dorlands medical dictionary, Philidelphia: W.B. Saunders Co(1988) Thompson, WAR, editor. Black medical dictionary, 33ed. Adam and Charles Black, (1981) Tipple, M. A., L. A. Bland, J. J. Murphy, M. J. Arduino, A. L. Panlilio, J. J. Farmer III, M. A. Tourault, C. R. Macpherson, J. E. Menitove, A. J. Grindon “Sepsis associated with transfusion of red cells contaminated with Yersinia enterocolitica.”, Transfusion 30, 207-213(1990) Tseng, C. C. and C. S. Li “Ozone for inactivation of aerosolized bacteriophages”, Aerosol Science and Technology, 40:683–689 (2006) Tseng, C. C., C. S. Li “Collection efficiencies of aerosol samplers for virus-containing aerosols”, Aerosol Science, 36, 593–607 (2005) Watts, R. J., S. Kong, M. P. Orr, G. C. Miller, B. E. Henry “Photo Catalytic Inactivation of coliform bacteria and viruses in secondary wastewater effluent”, Water Research, 29, pp. 95-100(1995) WHO “Typhoid fever”, World Health Organization, http://www.who.chTest/ (1998) WHO, Fact sheet no.139:” Multi-drug resistant Salmonella typhimurium. “ World Health Organization, http://www.who.chTest/ (1997) Willeke, K., Y. Qian, J. Donnelly, S. Grinsphpun, V. Ulevicius “Penetration of airborne microorganisms through a surgical mask and a dust/mist respirator,” Am Indust Hyg Assoc J, 57, 348-355 (1996) Wu, P.C., H. J. Su, C.Y. Lin, “Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons” The Science of the Total Environment, 253, 111-118 (2000) 王玉純,臭氧對生物氣膠殺菌效率之評估,國立台灣大學環境衛生研究所博士論文(2002) 生物資源保存及研究中心,http://www.bcrc.firdi.org.twTest/ 余國賓,以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去除效率之研究,國立台灣大學環境工程研究所博士論文(2006) 吳致呈,空氣負離子控制室內空氣污染物之研究。國立台灣大學環境工程研究所博士論文(2006) 吳華真,退伍軍人症,仁愛醫訊,第19卷,第一期(2003) 林玟仙,Dopa之生物活性探討。嘉南藥理科技大學碩士論文(2005) 林家妤,以紫外線及二氧化鈦光觸媒對生物氣膠控制技術之評估,國立台灣大學環境衛生研究所博士論文(2002) 林鴻鵬,紡織工業抗菌劑之比較,絲織公會-台灣區絲織產業網,第37期(2001) 室內空氣質量標準,中國大陸國家環保總局衛生部,2002 年12月,http://www.zhb.gov.cnTest 孫浩仁,室內材質表面特性對空氣負離子去除懸浮微粒效率之影響,國立台灣大學環境工程研究所碩士論文(2006) 國家衛生研究院,流感資訊網,http://flu.nhri.org.tw/H5N1_index.phpTest 婁嘉玲,紫外光與光觸媒濾材對生物氣膠殺菌效率之研究,國立台灣大學環境工程研究所碩士論文(2005) 曾國瑋,奈米銀濾材處理生物氣膠之研究,國立台灣大學環境工程研究所碩士論文(2006) 黃小林,莊佩君,黃宜靖,揚心豪,幾丁聚醣前處理濾材對細菌類生物氣膠去除效能之評估, 2006年國際氣膠研討會論文集 鄭博仁,空氣負離子對室內懸浮微粒去除效率之研究,國立台灣大學環境工程研究所碩士論文(2004) 辦公室及公眾場所室內空氣質素檢定計劃指南,香港政府之室內空氣質素管理小組,2003 年9 月,http://www.iaq.gov.hkTest 環保署室內空氣品質建議值,中華民國行政院環保署,2006 年1月,http://www.epa.gov.twTest。; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/62780Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/62780/1/ntu-96-R94541122-1.pdfTest