رسالة جامعية

改良式脊形電光調變器之研究 ; Improvement of Ridge-type Electro-optical Modulators

التفاصيل البيبلوغرافية
العنوان: 改良式脊形電光調變器之研究 ; Improvement of Ridge-type Electro-optical Modulators
المؤلفون: 吳翊魁, Wu, Yi-Kuei
المساهمون: 王維新, 臺灣大學:光電工程學研究所
سنة النشر: 2005
المجموعة: National Taiwan University Institutional Repository (NTUR)
مصطلحات موضوعية: 電光調變器, 脊形結構, Electro-optical modulators, Ridge structure
الوصف: 本文提出一種新型的電極結構,此結構適用於X-cut鈮酸鋰基板上之脊形電光調變器,其優點為可增加重疊積分值、降低驅動電壓。經模擬分析,相較於傳統電極結構的脊形結構電光調變器,其驅動電壓可以降低15%以上,而且操作頻寬並未因而減少。且由模擬結果可以證明,將此結構應用在脊形側面傾斜的電光調變器,此優勢依舊存在。實驗上,亦應用此新型電極結構於脊形馬赫任德電光調變器之製作,量測結果顯示該元件訊熄比為18.5 dB,驅動電壓則由3.4V降至2.5V,極有應用價值。 ; A novel electro-optical (EO) modulator with ridge on the X-cut lithium niobate substrate is proposed. Its simulated driving voltage can be decreased more than 15% in comparison to that of a conventional one. The improvement of driving voltage and overlap integral is noticeable even when the side wall of ridge is tilted. For comparison, a Mach-Zehnder modulator with the improved EO modulator is successfully fabricated, whose measured extinction ratio is 18.5 dB and measured driving voltage is decreased from 3.4V to 2.5V. That is useful for practical application. ; 第一章 緒論 1 1-1 電光調變器簡介 1 1-1.1 電光調變器之重要性與應用 1 1-1.2 電光調變器之原理 3 1-2 研究背景 9 1-2.1 脊形電光調變器 9 1-2.2 脊形製作演進 9 1-3 研究動機 10 1-4 內文概述 12 第二章 電場分布之模擬 13 2-1 簡介 13 2-2 電場分布理論及推導 13 2-3 模擬結果 19 第三章 雜質擴散濃度分布之模擬 23 3-1 簡介 23 3-2 擴散理論及推導 23 3-3 模擬結果 28 第四章 折射率及光場模態分布 33 4-1 折射率分布 33 4-2 光場模擬理論 35 4-3 模擬結果 40 第五章 重疊積分值模擬結果及討論 44 5-1 模擬結果驗證 44 5-2 改良式電光調變器重疊積分值之討論 47 5-2.1 改良式電極結構脊形電光調變器之比較 47 5-2.2 製程參數對改良式電極電光調變器之影響 51 5-3 改良式結構之操作頻率特性 56 第六章 元件製作結果 59 6-1 元件製作及量測方法 59 6-1.1 元件設計 59 6-1.2 製作流程 61 6-1.3 量測分析方法 70 6-2 實驗結果 74 6-2.1 X-cut脊形波導蝕刻及討論 74 6-2.2 脊形光波導製作 76 6-2.3 電極製作 78 6-2.4 實驗結果分析及討論 79 第七章 結論與展望 82 7-1 結論 82 7-2 未來展望 82 參考文獻 84 中英文對照表 87
نوع الوثيقة: thesis
وصف الملف: 2139666 bytes; application/pdf
اللغة: Chinese
English
العلاقة: [1] U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photonics Technol. Lett., vol. 7, no. 1, pp. 129-131, Jan. 1995. [2] Fuwan Gan and Franz X. Kärtner, “High-speed Silicon electrooptic modulator design,” IEEE Photonics Technol. Lett., vol. 17, no. 5, pp. 1007-1009, May 2005. [3] Qianfan Xu, Bradley Schmidt, Sameer Pradhan, and Michal Lipson, “Micrometre-scale Silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325-327, May 2005. [4] Rod C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, no. 8, pp. 1121-1137, Aug. 1982. [5] D. Marcuse, “Electrostatic Field of Coplanar Lines Computed with the Point Matching Method,” IEEE J. Quantum Electron., vol. 25, no. 5, pp. 939-947, May 1989. [6] R. A. Becker and B. E. Kincaid, “Improved electrooptic efficiency in guided- wave modulators,” J. Lightwave Technol., vol. 11, no. 12, pp. 2076- 2079, Dec.1993. [7] Shih-Jung Chang, Ching-Long Tsai, Yih-Bin Lin, Ju-Feng Liu, and Way-Seen Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO3,” J. Lightwave Technol., vol. 17, no. 5, pp. 843-847, May 1999. [8] K.Noguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, “High efficient 40GHz bandwidth Ti-LiNbO3 optical modulator employing ridge structure,” IEEE Photonics Technol. Lett., vol. 5, no. 1, pp. 52-54, 1993. [9] Fredrik Laurell, Jonas Webjorn, Gunnar Arvidsson, and Johan Holmberg, “Wet Etching of Proton-exchanged Lithium Niobate-A Novel Processing Technique,” J. Lightwave Technol., vol. 10, no. 11, pp. 1606-1609, Nov. 1992. [10] Ian E. Barry, Graeme W. Ross, Peter G. R. Smith, Robert W. Eason, and Gary Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domain,” Material Letters, vol. 37, pp. 246-254, Nov. 1998. [11] Ian E. Barry, Graeme W. Ross, Peter G. R. Smith, and Robert W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett., vol. 74, no. 10, pp.1487-1488, Mar. 1999. [12] S. Mailis; G.W. Ross, L. Reekie, J.A. Abernethy, and R.W. Eason, “Fabrication of surface relief gratings on lithium niobate by combined UV laser and wet etching,” Electron. Lett., vol. 36, no. 21, pp. 1801-1803, Oct. 2000. [13] Payam Rabiei and William H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett., vol. 86, no. 16, pp. 161115, Apr. 2005. [14] K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface Gratings on LiNbO3 by ultrashort UV laser pulse,” Appl. Phys. A: Materials Science & Processing, vol. 65, pp. 517-518, Oct. 1997. [15] O. Ramer, “Integrated optic electrooptic modulator electrode analysis,” IEEE J. Quantum Electron., vol. 18, no. 3, pp. 386-392, March 1982. [16] Richard L. Burden and J. Douglas Faires, Numerical Analysis, 7ed., Brooks/Cole, pp.360~367, 2001. [17] William H. Process, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C, Cambridge University Press, 1999. [18] P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber and Integrated Opt., vol. 15, pp. 135-147, 1996. [19] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol., vol. 5, no. 5, pp. 700-708, May 1987. [20] M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. J., vol. 135, pp. 56-63, 1988. [21] M. S. Stern, “Semivectorial polarized H field solutions for dielectric waveguides with arbitrary index profiles,” IEE Proc. J., vol. 135, pp. 333-338, 1988. [22] Ganesh K. Gopalakrishnan, William K. Burns, Robert W. McElhanon, Catherine H. Bulmer, and Arthur S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol., vol. 12, no. 10, pp. 1907-1819, Oct. 1994.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/50794Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/50794/1/ntu-94-R92941015-1.pdfTest
الإتاحة: http://ntur.lib.ntu.edu.tw/handle/246246/50794Test
http://ntur.lib.ntu.edu.tw/bitstream/246246/50794/1/ntu-94-R92941015-1.pdfTest
رقم الانضمام: edsbas.40515F1F
قاعدة البيانات: BASE