يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"INTEGRATED optics"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    رسالة جامعية
  2. 2
    رسالة جامعية
  3. 3
    رسالة جامعية
  4. 4
    رسالة جامعية
  5. 5
    رسالة جامعية
  6. 6
    رسالة جامعية

    المؤلفون: 謝佳運, Hsieh, Jia-Yun

    المساهمون: 黃鼎偉, 臺灣大學:光電工程學研究所

    وصف الملف: 1474597 bytes; application/pdf

    العلاقة: [1] Bin Wang, Jianhua Jiang, and Gregory P. Nordin, “Compact slanted grating couplers,” Opt. Express, vol. 12, pp. 3313-3326, Jul. 2004. [2] Bin Wang, “ Compact waveguide grating couplers operating in the strong coupling regime,” Ph.D. Dissertation, The University of Alabama in Huntsville, 2005. [3] Tai Tsuchizawa, Koji Yamada, Hiroshi Fukuda, Toshifumi Watanabe, Jun-ichi Takahashi, Mitsutoshi Takahashi, Tetsufumi Shoji, Emi Tamechika, Sei-ichi Itabashi, and Hirofumi Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Quantum Electron., vol. 11, pp. 232-240, Jan./Feb. 2005. [4] Bin Wang, Jianhua Jiang, and Gregory P. Nordin, “Embedded Slanted Grating for Vertical Coupling Between Fibers and Silicon-on-Insulator Planar Waveguides,” IEEE Photon. Technol. Lett., vol. 17, pp. 1884-1886, Sep. 2005. [5] F. Van Laere, G. Roelkens, J. Schrauwen,D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout and R. Beaets, “Compact grating couplers between optical fibers and Silicon-on-Insulator photonic wire waveguides with 69% coupling efficiency,” OFC 2006, p. PDP15, United States, 2006. [6] Daoxin Dai, Sailing He, and Hon-Ki Tsang, “Bilevel Mode Converter Between a Silicon photonic wire and a Large Waveguide,” J. Lightwave Techonol., vol. 24, pp. 2428-2433, Jun. 2006. [7] P. Cheben, D-X. Xu, S. Janz, and A. Densmore, “Subwavelength Waveguide Grating Coupler,” IEEE LEOS Group IV Photonics Conference, pp. 143-146, Ottawa, Canada, September 2006. [8] Frederik Van Laere, Gunther Roelkens, Melanie Ayre, Jonathan Schrauwen, Dirk Taillaert, Dries Van Thourhout, Thomas F. Krauss, and Roel Baets, ”Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” IEEE Photon. Technol. Lett., vol. 19, pp. 396-398, Mar. 2007. [9] Gunther Roelkens, Dries Van Thourhout, and Roel Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett, vol. 32, pp. 1495-1497, Jun. 2007. [10] Gunther Roelkens, Dries Van Thourhout, and Roel Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express, vol. 14, pp. 11622-11630, Nov. 2006. [11] Dirk Taillaert, Peter Bientman, and Roel Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett., vol. 29, pp. 2749-2751, Dec. 2004. [12] Goran Z. Masanovic, Vittorio M. N. Passaro, and Graham T. Reed, “Dual Grating-Assisted Directional Coupling Between Fibers and Thin Semiconductor Waveguides,” IEEE Photon. Techonol. Lett., vol. 15, pp. 1395-1397, Oct. 2003.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/50848Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/50848/1/ntu-96-R94941028-1.pdfTest

  7. 7
    رسالة جامعية

    المؤلفون: 徐文浩, Hsu, Wen-Hao

    المساهمون: 王維新, 臺灣大學:光電工程學研究所

    وصف الملف: 2992902 bytes; application/pdf

    العلاقة: [1] R. G. Hunsperger, Integrated Optics: Theory and Technology 5th Ed., Springer, 2002. [2] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, Oct. 1974. [3] M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc., vol. 135, no. 2, pp. 85-91, Apr. 1988. [4] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol., vol. 5, no. 5, pp. 700-708, May 1987. [5] M. Fukuma and J. Noda, “Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-fiber characteristics,” Appl. Opt., vol. 19, no. 4, pp. 591-597, Feb. 1980. [6] M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, “Precise determination of refractive-index changes in Ti-diffused LiNbO3 optical waveguides,” J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, Sep. 1978. [7] J. R. Carruthers, I. P. Kaminow, and L. W. Stulz, “Diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalite,” Appl. Opt., vol. 13, no. 10, pp. 2333-2342, Oct. 1974. [8] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, Apr. 1996. [9] W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive damage resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett., vol. 16, pp. 995-997, 1991. [10] Y. P. Liao and R. C. Lu, “TE-pass polarizers with NI-NIPE-NI structure in Z-cut LiNbO3,” Electron. Lett., vol. 35, no. 17, pp. 1465-1467, Aug. 1999. [11] W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, Sep. 1992. [12] 涂瑞清,「長波長鋅擴散式鈮酸鋰光波導元件之研製」,國立台灣大學光電工程學研究所博士論文,2000年。 [13] M. E. Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Aapplications, Wiley, 2000. [14] W. H. Process, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numertical Recipes in C, Cambridge University Press, 1999. [15] J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt., vol. 15, no. 1, pp. 151-155, 1976. [16] K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol., vol. 3, no. 2, pp. 385-391, Apr. 1985. [17] D. Marcuse, “Electrostatic field of coplanar lines computed with the point matching method,” IEEE J. Quantum Electron., vol. 25, no. 5, pp. 939-947, May 1989. [18] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron., vol. 9, no. 9, pp. 919-933, Sep. 1973. [19] J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A, vol. 1, no. 7, pp. 742-753, Jul. 1984. [20] A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol., vol. 5, no. 5, pp. 660-667, May 1987. [21] J. Čtyroký, J. Homola, and M. Skalský, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Optical and Quantum Electron., vol. 29, pp. 301-311, 1997. [22] 蘇俊陽,「光波導之數值模擬」,國立台灣大學電機工程學研究所博士論文,1995年。 [23] K. Kawana and T. Kitoh, Introduction to Optical Waveguide Analysis, Wiley, 2001. [24] G. B. Hocker and W. K. Burns, “Modes in diffused optical waveguides of arbitrary index profile,” IEEE J. Quantum Electron., vol. 11, no. 6, pp. 270-276, Jun. 1975. [25] W. S. Wang, Y. P. Liao, and C. H. Yang, “Nickel-indiffusion waveguide for TE-TM mode splitter in lithium niobate,” Int. J. High Speed Electronics and System, vol. 8, no. 4, pp. 621-642, 1997. [26] 廖裕評,「金屬擴散式極化分離器之研製」,國立台灣大學電機工程學研究所博士論文,1995年。 [27] 陳卓彥,「藍光鋅鎳擴散式馬赫任德電光調變器之研製」,國立台灣大學光電工程學研究所碩士論文,2005年。 [28] 陳松良,「鈮酸鋰藍光方向耦合器之研製」,國立台灣大學光電工程學研究所碩士論文,2005年。 [29] W. S. Wang, M. C. Lee, S. L. Chen, W. H. Hsu, “Titanium-indiffused lithium niobate blue-laser waveguides,” in Proc. CLEO/Pacific Rim, 2005, paper CTuK1-4. [30] Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing from birefringence in multilayer first cladding,” IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1418-1420, Dec. 1993. [31] A. Morand, C. Sanchez-Pèrez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett., vol. 10, no. 11, pp. 1599-1601, Nov. 1993. [32] C. H. Chen and L. Wang, “Design of finite-length metal-clad optical waveguide polarizer,” IEEE J. Quantum Electron., vol. 34, no. 7, pp. 1089-1097, Jul. 1998. [33] P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Low-loss high-extinction polarizers fabricated in LiNbO3 by proton exchange,“ Opt. Lett., vol. 13, no. 2, pp. 172-174, 1988. [34] Y. P. Liao and R. C. Lu, “TE-pass polarisers with NI-NIPE-NI structure in Z-cut LiNbO3,” Electron. Lett., vol. 35, no. 17, pp. 1465-1467, Aug. 1999. [35] P. Jiang, F. Zhou, P. J. R. Laybourn, and R. M. De La Rue, “Buried optical waveguide polarizer by titanium indiffusion and proton-exchange in LiNbO3,” IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 881-883, Aug. 1992. [36] C. C. Huang and C. C. Huang, “Novel multisectional bending polymeric waveguide polarizer,” in Proc. CLEO, vol. 2, 2004, pp. 3. [37] R. C. Twu, C. C. Huang, and W. S. Wang, “Zn indiffusion waveguide polarizer on a Y-cut LiNbO3 at 1.32-um wavelength,” IEEE Photon. Technol. Lett., vol. 12, no. 2, pp. 161-163, Feb. 2000. [38] 陳瑞鑫,「利用濕式蝕刻法研製之脊型鈮酸鋰光波導元件」,國立台灣大學電機工程學研究所博士論文,1995年。 [39] G. Stock, “Realisation of integrated optical polarizers for Ti:LiNbO3 with Au, Al, and Ti metal cladding,” Electron. Lett., vol. 24, no. 14, pp. 899-901, Jul. 1988. [40] J. Čtyroký and H. J. Henning, “Thin-film polarizer for Ti:LiNbO3 waevguides at lamda=1.3um,” Electron. Lett., vol. 22, no. 14, pp. 756-758, Jul. 1986. [41] R. A. Becker and R. C. Williamson, “Photorefractive effects in LiNbO3 channel waveguides: model and experimental verification,” Appl. Phys. Lett., vol. 47, no. 10, pp. 1024-1026, Nov. 1985. [42] W. H. Hsu, K. C. Lin, J. Y. Lin, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Select. Topic Quantum Electron., vol. 11. no. 1, pp. 271-277, Jan/Feb 2005. [43] W. H. Hsu, K. C. Lin, and W. S. Wang, “A homogeneous Y-branch type polarization splitter with electrically-tunable output powers on lithium niobate,” in Proc. CLEO/Europe, 2003, pp. 654. [44] K. C. Lin, W. H. Hsu, and W. S. Wang, “Novel optical polarization splitter in lithium niobate,” in Proc. Sixth Chinese Optoelectronics Symposium, 2003, pp. 288-291. [45] B. Glance, “Polarization independent coherent optical receiver,” J. Lightwave Technol., vol. 5, no. 2, pp. 274-276, Feb. 1987. [46] W. J. Minford, R. Depaula, and G. A. Bogert, “Interferometric fiber optical gyroscope using a novel 3x3 integrated optic polarizer/splitter,” in Dig. Conf. Optical Fiber Sensors, 1988, pp. 385-392. [47] M. Kobayashi, H. Terui, and K. Egashira, “An optical TE-TM mode splitter,” Appl. Phys. Lett., vol. 32, no. 5, pp. 300-302, 1978. [48] D. Yap, L. M. Johnson, and G. W. Pratt. Jr., “Passive Ti:LiNbO3 channel waveguide TE-TM mode splitter,” Appl. Phys. Lett., vol. 44, no. 6, pp. 583-585, 1984. [49] R. C. Twu, C. C. Huang, and W. S. Wang, “TE-TM mode splitter with heterogeneously coupled Ti-diffused and Ni-diffused waveguides on Z-cut lithium niobate,” Electron. Lett., vol. 36, no. 3, pp. 220-221, Feb. 2000. [50] H. Yajima, “Dielectric thin-film optical branching waveguide,” Appl. Phys. Lett., vol. 22, no. 12, pp. 647-649, 1973. [51] W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron., vol. 11, no. 1, pp. 32-39, Jan. 1975. [52] M. Masuda and G. L. Yip, “An optical TE/TM mode splitter using a LiNbO3 branching waveguide,” Appl. Phys. Lett., vol. 37, no. 1, pp. 20-22, 1980. [53] J. J. G. M. van der Tol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol., vol. 9, no. 7, pp. 879-886, July 1991. [54] N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol., vol. 7, no. 10, pp. 1567-1574, Oct. 1989. [55] P. K. Wei and W. S. Wang, “Novel TE-TM mode splitter on lithium niobate using nickel indiffusion and proton exchange techniques,” Electron. Lett., vol. 30, no. 1, pp. 35-37, Jan. 1994. [56] J. Hankey, J. Urquhart, A. J. Moseley, C. Edge, M. J. Wale, M. Owen, and S. J. Pike, “Balanced polarisation diversity receiver using hybrid assembly techniques for optical coherent multichannel systems,” Electron. Lett., vol. 27, no. 21, pp. 1935-1937, Oct. 1991. [57] R. C. Alferness, “Efficient waveguide electro-optic TE/TM mode converter/wavelength filter,” Appl. Phys. Lett., vol. 36, no. 7, pp. 513-515, 1980. [58] R. S. Cheng, W. L. Chen, and W. S. Wang, “Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchange wet etch and nickel indiffusion,” IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1282-1284, 1995. [59] S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, “Improved electro-optic modulator with ridge structure in x-cut LiNbO3,” J. Lightwave Technol., vol. 17, no. 5, pp. 843-847, 1999. [60] Ed L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems, ” IEEE J. Select. Topics Quantum Electron., vol. 6, no. 1, pp. 69-82, Jan. 2000. [61] K. C. Lin, W. H. Hsu, and W. S. Wang, “Tunable ridged lithium niobate polarization splitter,” in Proc. Optics and Photonics Taiwan, 2002. [62] Y. P. Liao and R. C. Lu, “Design and fabrication of wide-angle TE-TM mode splitter in lithium niobate,” IEEE J. Select. Topics Quantum Electron., vol. 6, no. 1, pp. 88-93, Jan. 2000. [63] C. W. Lin, C. L. Chen, W. H. Hsu, and W. S. Wang, “Polarization splitter with simplified coherent coupling structure,” in Proc. Optics and Photonics Taiwan, 2005, paper PA-FR1-103. [64] J. Y. Li, W. H. Hsu, and W. S. Wang, “A TE-TM mode splitter using annealed proton exchanged and zinc/nickel co-diffusion waveguide,” in Tech. Dig. CLEO/Pacific Rim, vol. 1, 2001, pp. 94-95. [65] S. R. Park and B. O, “Novel design concept of waveguide mode adapter for low-loss mode conversion,” IEEE Photon. Technol. Lett., vol. 13, no. 7, pp. 675-677, July 2001. [66] F. Laurell, J. Webjorn, G. Arviddson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate – a novel processing technique,” J. Lightwave Technol., vol. 10, no. 11, pp. 1606-1609, Nov. 1992. [67] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., vol. 41, no. 7, pp. 607-608, 1982. [68] N. A. Sanford, J. M. Connors, and W. A. Dyes, “Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate,” J. Lightwave Technol., vol. 6, no. 6, pp. 898-902, June 1988. [69] 吳翊魁,「改良式脊型電光調變器之研究」,國立台灣大學光電工程學研究所碩士論文,2005年。 [70] W. Y. Hwang, M. C. Oh, H. Park, J. H. Ahn, S. G. Han, and H. G. Kim, “Polarization stabilizer using a polarization splitter and a thermooptic polymer waveguide device,” IEEE Photon. Technol. Lett., vol. 10, no. 12, pp. 1736-1738, Dec. 1998. [71] F. Caccavale, F. Segato, I. Mansour, and M. Gianesin, “A finite differences method for the reconstruction of refractive index profiles from near-field measurements,” J. Lightwave Technol., vol. 16, no. 7, pp. 1348-1353, Jul. 1998. [72] D. Brooks, and S. Ruschin, “Improved near-field method for refractive index measurement of optical waveguides,” IEEE Photon. Technol. Lett., vol. 8, no. 2, pp. 254-256, Apr. 1996. [73] W. H. Hsu, C. C. Hsin, T. L. Ting, and W. S. Wang, “Refractive index modeling of diffused lithium niobate waveguides using genetic algorithm,” in Proc. Optics and Photonics Taiwan, 2003, paper FC2. [74] W. S. Tsai, W. H. Hsu, and Way-Seen Wang, “The effect of noise on the reconstruction of waveguide index profile by the near-field method,” in Proc. Optics and Photonics Taiwan, 2005, paper B-FR-IV 4-6. [75] W. H. Hsu, Y. S. Chu, L. Y. Chen, C. W. Lin, and W. S. Wang, “Investigations of the silica-waveguide-based surface plasmon resonance sensor over wide analyte detection range,” in Proc. Optics and Photonics Taiwan, 2005, paper B-SA-IV 8-1. [76] W. H. Hsu, Y. S. Chu, T. L. Ting, L. Y. Chen, and W. S. Wang, “A study of surface plasmon resonance sensors using proton exchanged waveguides on lithium niobate,” in Proc. Optics and Photonics Taiwan, 2004, paper B-SA-VII2. (Student Paper Award) [77] C. F. Klingshirn, Semiconductor optics, Springer, 1995. [78] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett., vol. 47, no. 26, pp. 1927-1930, Dec. 1981. [79] J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy, metal films,” Phys. Rev. B, vol. 33, no. 8, pp. 5186-5201, Apr. 1986. [80] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B, Chem., vol. 54, pp. 3-15, 1999. [81] J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemporary Phys., vol. 32, no. 3, pp. 173-183, 1991. [82] R.D. Harris and J.S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B, Chem., vol.29, pp. 261-267, 1995. [83] J. Čtyroký, J. Homola, P. V. Lambeck, S, Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, N. M. Lyndin, “Theory and modeling of optical waveguide sensors utilizing surface plasmon resonance,“ Sen. Actuator B, Chem., vol. 54, pp. 66-73, 1999. [84] R. A. Innes and J. R. Sambles, “Optical characterization of gold using surface plasmon-polaritons,” J. Phys. F: Met. Phys., vol. 17, pp. 277-287, 1987. [85] C. R. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sen. Actuator B, Chem., vol. 22, pp. 75-81, 1994. [86] M.N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett., vol. 32, no. 9, pp. 842-843, 1996. [87] J. Dostálek, J. Čtyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B, Chem., vol. 76, pp. 8-12, 2001. [88] J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B, Chem., vol. 54, pp. 16-24, 1999. [89] 朱怡欣,「光波導式表面電漿子共振感測元件之研製」,國立台灣大學電子工程學研究所碩士論文,2005年。 [90] M. N. Weiss, R. Srivastava, H. Groger, Peter Lo, and S. F. Luo, “A theoretical investigation of environment monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A, Phys., vol. 51, pp. 211-217, 1996. [91] J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett., vol. 33, no. 14, pp. 1246-1247, 1997. [92] R.C. Jorgenson and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B, Chem., vol. 12, pp. 213-220, 1993. [93] M. J. Weber, Handbook of Optical Material, CRC Press, 2003. [94] D. M. Gill, D. Jacobson, C. A. White, C. C. W. Jones, Y. Shi, W. J. Minford, and A Harris, “Ridged LiNbO3 modulators fabricated by a novel oxygen-ion implant/wet-etch technique,” J. Lightwave Technol., vol. 22, no. 3, pp. 887-894, Mar. 2004. [95] T. L. Ting, L. Y. Chen, and W. S. Wang, “A novel wet-etching method using joint proton source in LiNbO3,” to be published in IEEE Photon. Technol. Lett. [96] T. J. Wang, C. F. Huang, W. S. Wang, and P. K. Wei, “A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3,” J. Lightwave Technol., vol. 22, no. 7, pp. 1764-1771, Jul. 2004.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/50841Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/50841/1/ntu-95-D91941003-1.pdfTest

  8. 8
    رسالة جامعية

    المؤلفون: 丁天倫, Ting, Tien-Lun

    المساهمون: 王維新, 臺灣大學:光電工程學研究所

    وصف الملف: 5138375 bytes; application/pdf

    العلاقة: [1] E. Voges and A. Neyer, “Integrated-optic devices on LiNbO3 for optical communication,” J. Lightwave Tech., vol. 5, pp. 1129-1238, 1987. [2] R. G. Hunsperger, Integrated Optics: Theory and Technology 5th Ed., Springer, 2002. [3] G. J. Griffiths and R. J. Esdaile, “Analysis of titanium diffused planar optical waveguides in lithium niobate,” IEEE J. Quantum Electron., vol. 20, pp. 149-159, 1984. [4] P. K. Wei and W. S. Wang, “Fabrication of lithium niobate optical channel waveguides by nickel indiffusion,” Microwave and Opt. Tech. Lett., vol. 7, pp. 219-221, 1994. [5] Y. P. Liao, D. J. Chen, R.C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Tech. Lett., vol. 8, pp. 548-550, 1996. [6] S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO3,” J. Lightwave Tech., vol. 17, pp. 843-847, 1999. [7] R. S. Cheng, T. J. Wang, and W. S. Wang, “Wet-etched ridge waveguides in y-cut lithium niobate,” J. Lightwave Tech., vol. 15, pp. 1880-1887, 1997. [8] W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 271-277 Jan./Feb. 2005. [9] K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett., vol. 6, pp. 228-229, 1965 [10] C. L. Lee and C. L. Lu, “CF4 plasma etching on LiNbO3,” Appl. Phys. Lett., vol. 35, pp. 756-758, 1979. [11] Y. Ohmachi and J. Noda, “Electro-optic light modulator with branched ridge waveguide,” Appl. Phys. Lett., vol. 27, pp. 544-546, 1975. [12] I. P. Kaminow and V. Ramaswamy, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett., vol. 24, pp. 622-624, 1974. [13] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Tech., vol. 10, pp. 1606-1609, 1992. [14] V.M.N. Passaro, M.N. Armenise, D. Nesheva, I.T. Savatinova, and E.Y.B. Pun, “LiNbO3 optical waveguides formed in a new proton source,” J. Lightwave Tech., vol. 20, pp. 71-77, 2002. [15] J. Webjörn, “Structural influence of proton exchange on domain-inverted lithium niobate revealed by means of selective etching,” J. Lightwave Tech., vol. 11, pp. 589-594, 1993. [16] M. E. Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications, Wiley, 2000. [17] S. T. Vohra and A. R. Mickelson, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys., vol. 66, pp. 5161-5174, 1989. [18] W. H. Process, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, Cambridge University Press, 1999. [19] K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis, Wiley, 2001. [20] 陳瑞鑫,「利用溼式蝕刻法研製之脊型鈮酸鋰光波導元件」,國立台灣大學電機工程學研究所博士論文,1996年。 [21] T.-L. Ting, L.-Y. Chen, and W.-S. Wang, “A novel wet-etching method using joint proton source in LiNbO3,” IEEE Photon. Tech. Lett., vol. 18, pp. 568-570, 2006. [22] T.-L. Ting, L.-Y. Chen, and W.-S. Wang, “Wet Etching X-cut LiNbO3 using diluted joint proton source,” to be published in Microwave and Opt. Tech. Lett. [23] T.-J. Wang, C.-F. Huang, W.-S. Wang, and P.-K. Wei, “A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3,” J. Lightwave Tech., vol. 22, pp. 1764-1771, 2004. [24] Y. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 2, pp. 187-196, 1996. [25] M. D. Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Comm., vol. 42, pp.101-103, 1982. [26] M. D. Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Extension of second-harmonic phase-matching range in lithium niobate guides,” Opt. Lett., vol. 8, pp. 116-118, 1983. [27] D. Y. Zang and C. S. Tsai, “Single-mode waveguide microlenses and microlens arrays fabrication in LiNbO3 using titanium indiffused proton exchange technique,” Appl. Phys. Lett., vol. 46, pp. 703-705, 1985. [28] P. Jiang, F. Zhou, P. J. R. Laybourn, and R. M. De La Rue, “Buried optical waveguide polarizer by titanium indiffusion and proton-exchange in LiNbO3,” IEEE Photon. Tech. Lett., vol. 4, pp. 881-883, 1992. [29] S. A. Reid, M. Varasi, and S. Reynolds, “Double dilute melt proton exchange Fresnel lenses for LiNbO3 optical waveguides,” J. Opt. Comm., vol. 10, pp. 67-73, 1989. [30] C. Canali, A. Camera, G. Della Mea, P. Mazzoldi, S. M. Al Shukri, A. C. G. Nutt, and R. M. De La Rue, “Structural characterization of proton exchanged LiNbO3 optical waveguides,” J. Appl. Phys., vol. 59, pp. 2643-2649, 1986. [31] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., vol. 41, pp. 607-608, 1982. [32] R. G. Wilson, S. W. Novak, J. M. Zavada, A. Loni, and R. M. De La Rue, “Secondary ion mass spectrometry depth profiling of proton-exchanged LiNbO3 waveguides,” J. Appl. Phys., vol. 66, pp. 6055-6058, 1989. [33] T. Veng and T. Skettrup, “Ion exchange model for α phase proton exchange waveguides in LiNbO3,” J. Lightwave Tech., vol. 16, pp. 646-649, 1998. [34] S. T. Vohra and A. R. Mickelson, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys., vol. 66, pp. 5161-5174, 1989. [35] W. Charczenko and A. R. Mickelson, “Modeling of proton-exchanged and annealed channel waveguides and directional couplers,” J. Appl. Phys., vol. 73, pp. 3139-3148, 1993. [36] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in z-cut LiNbO3,” J. Appl. Phys., vol. 54, pp. 6218-6220, 1983. [37] J. Nikolopoulos and G. L. Yip, “Theoretical modeling and characterization of annealed proton-exchanged planar waveguide in z-cut LiNbO3,” J. Lightwave Tech., vol. L.T.-5, pp. 700-708, 1987. [38] F. Sauer and V. Freise, “Diffusion in binären Gemischen mit Volumenänderung,“ Z. Elektrochem. Angew. Phys. Chem., vol. 66, pp. 353–363, 1962. [39] D. Anderson and M. Lisak, “Approximate solutions of some nonlinear diffusion equations,” Phys. Rev., vol. A22, pp.2761-2768, 1980. [40] E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightwave Tech., vol. 11, pp. 277-284, 1993. [41] T. Shiozawa, H. Miyamoto, H. Ohta, M. Yamaguchi, and T. Oki, “Determination of two-dimensional optical waveguide index distribution function parameters from effective indexes,” J. Lightwave Tech., vol. 8, pp. 497-505, 1990. [42] W. L. Chen, R. S. Cheng, J. H. Lee, and W. S. Wang, “Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet-etching,” IEEE Photon. Tech. Lett., vol. 7, pp. 1318-1320, 1995. [43] M. S. Stern, “Rayleigh quotient solution of semivectorial field problems for waveguide with arbitrary index profiles,” IEE Proc. J., vol. 138, pp. 185-190, 1991. [44] G. R. Hadley, “Transparent boundary condition for beam propagation,” Opt. Lett., vol. 16, pp. 624-626, 1991. [45] G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron., vol. 28, pp. 363-370, 1992. [46] S. Fouchet, A. Carenco, C. Daguet, R. Gugliemi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Tech., vol. L.T.-5, pp. 700-708, 1987. [47] 吳翊魁,「改良式脊型電光調變器之研究」,國立台灣大學光電工程學研究所碩士論文,2005年。 [48] R. Scarmozzino and R. M. Osgood, “Investigation of the Padé approximant-based wide-angle beam propagation method for accurate modeling of waveguide circuits,” J. Lightwave Tech., vol. 14, pp. 2813-2822, 1996. [49] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Tech., vol. 13, pp. 615-627, 1995. [50] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N×N multimode interfernece couplers including phase relations,” Appl. Opt. , vol. 33, pp. 3905-3911, 1994. [51] S. Safavi-Naeini, S. K. Chaudhuri, and A. Goss, “Design and analysis of novel multimode optical filters in dielectric waveguide,” J. Lightwave Tech., vol. 11, pp. 1970-1977, 1993. [52] Q. Wang, S. He, and L. Wang, “A low-loss Y-branch with a multimode waveguide transition section,” IEEE Photon. Tech. Lett., vol. 14, pp. 1124-1126, 2002.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/50719Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/50719/1/ntu-95-D91941013-1.pdfTest

  9. 9
    رسالة جامعية

    المؤلفون: 朱怡欣, Chu, Yi-Shin

    المساهمون: 王維新, 臺灣大學:電子工程學研究所

    وصف الملف: 2964212 bytes; application/pdf

    العلاقة: [1] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B, vol. 54, pp. 3-15, 1999. [2] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev., vol. 106, pp. 874-881, 1957. [3] C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators, vol. 3, pp. 79-88, 1982. [4] B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators, vol. 4, pp. 299-304, 1983. [5] B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance – how it all started,” Biosens. Bioelectron., vol. 10, pp. i-ix, 1995. [6] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824-830, 2003. [7] R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B, vol. 29, pp. 261-267, 1995. [8] M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” IEE Electron. Lett., vol. 32, pp. 842-843, 1996. [9] M. N. Weiss, R. Srivastava, H. Groger, P. Lo, and S.-F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators B, vol. 51, pp. 211-217, 1996. [10] J. Homola, J. Čtyroký, M. Skalský, J. Hradilová, and P. Kolářová, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuators B, vol. 38-39, pp. 286-290, 1997. [11] J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” IEE Electron. Lett., vol. 33, pp. 1246-1248, 1997. [12] J. Dostálek, J. Čtyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B, vol. 76, pp. 8-12, 2001. [13] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, 1988. [14] J. Čtyroký, J. Homola, and M. Skalský, “Modeling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quantum Electron., vol. 29, pp. 301-311, 1997. [15] J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A, vol. 7, pp. 742-753, 1984. [16] A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol., vol. 5, pp. 660-667, 1987. [17] T. Tamir, Guided-wave optoelectronics, Springer-Verlag, 1990. [18] M. J. Weber, Handbook of Optical Materials, CRC Press, 2003. [19] J. Čtyroký et al., “Theory and modeling of optical waveguide sensors utilizing surface plasmon resonance,” Sens. Actuators B, vol. 54, pp. 66-73, 1999.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/57221Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/57221/1/ntu-94-R92943045-1.pdfTest

  10. 10
    رسالة جامعية

    المؤلفون: 許志瑋, Hsu, Chih-Wei

    المساهمون: 王維新, 臺灣大學:光電工程學研究所

    العلاقة: [1] Y. Shi, W. Wang, J. H. Bechtel, A. Chen, S. Garner, S. Kalluri, W. H. Steier, D. Chen, H. R. Fetterman, L. R. Dalton, and L. Yu, “Fabrication and characterization of high-speed polyurethane-disperse red 19 integrated electrooptic modulators for analog system applications,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, pp. 289-299, June 1996. [2] F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Anderson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science, vol. 273, pp. 1833-1836, Sept. 1996. [3] R. Moosburger and K. Petermann, “4×4 digital optical matrix switch using polymeric oversized rib waveguides,” IEEE Photon. Technol. Lett., vol. 10, no. 5, pp. 684-686, May 1998. [4] O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett., vol. 71, no. 6, pp. 750-752, Aug. 1997. [5] L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer bragg grating MZI’s,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1416-1418, Oct. 1998. [6] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsuchita, Y. Sugimoto, and H. Kiyoku, “Longitudinal mode spectra and ultrashort pulse generation of InGaN multiquantum well structure laser diodes,” Appl. Phys. Lett., vol. 70, no. 5, pp. 616-618, Feb. 1997. [7] Y. G. Zhao, W. K. Lu, Y. Ma, S. S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett., vol. 77, no. 19, pp. 2961-2963, Nov. 2000. [8] C. F. Kane and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett., vol. 7, no. 5, pp. 535-537, May 1995. [9] L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol., vol. 14, no. 7, pp. 1704-1713, July 1996. [10] M. Kagami, H. Ito, T. Ichikawa, S. Kato, M. Matsuda, and N. Takahashi, “Fabrication of large-core, high-; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/50682Test