رسالة جامعية

奈米碳管放電產生空氣負離子微型裝置之研究 ; Development of Microscale Air Ionizer -- Generation of Negative air Ions by Carbon-nanotube Electric Discharging

التفاصيل البيبلوغرافية
العنوان: 奈米碳管放電產生空氣負離子微型裝置之研究 ; Development of Microscale Air Ionizer -- Generation of Negative air Ions by Carbon-nanotube Electric Discharging
المؤلفون: 廖弓普, Liao, Gong-Pu
المساهمون: 李慧梅, 臺灣大學:環境工程學研究所
سنة النشر: 2007
المجموعة: National Taiwan University Institutional Repository (NTUR)
مصطلحات موضوعية: 負極放電, 空氣負離子, 奈米碳管, 起始放電電壓, 針尖曲率, negative electric discharge, negative air ions (NAIs), carbon nanotubes, initial discharging voltage, needle-point curvature
الوصف: 本研究探討以負極放電產生空氣負離子的各項操作因子與空氣負離子之基礎特性。利用奈米碳管的特性與奈米等級的尖端於低電壓下在空氣中進行放電產生空氣負離子,進而設計微型空氣清淨裝置。實驗主要探討針尖曲率、電極直徑、電極材質、奈米碳管對起始放電電壓之影響;空氣負離子的有效距離、空氣負離子產生裝置之穩定度。使用負極放電方式產生空氣負離子,放電電極的針尖曲率愈大起始放電電壓就愈低;在相同的電極針尖曲率下,當電極直徑愈小時,其起始放電電壓亦愈低。對於不同材質的電極而言,在相同的電極直徑與針尖曲率情況下,銅有最低的起始放電電壓,其次為銀、石墨、鉛、鐵、鎢、鋁。使用奈米碳管作為負極放電產生空氣負離子之放電電極,其起始放電電壓可在0.2 kV以下,遠低於一般金屬電極。在溼度40%下,空氣負離子濃度在6.3*105 ion/cm3左右時,會有0.5 ppb的臭氧產生;在溼度70%下,空氣負離子濃度在9*105 ion/cm3左右時,開始有0.5 ppb的臭氧產生。研究顯示空氣負離子濃度會隨距離的增加呈現對數線性遞減之趨勢(logarithmic linear tendency),在特定的對數線性距離後空氣負離子濃度隨著距離之增加呈現固定濃度。使用奈米碳管作為放電電極產生空氣負離子,在增加電壓時可以較穩定的產生空氣負離子。 ; This study investigated the operational factor and the base property of the negative air ions (NAIs) which were generated by negative electric discharge. This study also investigated the characteristics of carbon nanotubes which was used to generate negative air ions to develop a microscale air cleaner (MAC). First, this research investigated the influence of the initial discharging voltage about needle-point curvature, electrode diameter, electrode material, and the characteristics of carbon nanotubes. Second, it studied the effective distance of NAIs, stability of NAIs generator. NAIs were generated by the negative electric discharge method. The results show that the initial discharging voltage gets lower when the electrode needle-point curvature gets bigger. At the same needle-point curvature, the initial discharging voltage is lower when the electrode diameter is shorter. For different electrode material, when needle-point curvature and diameter are constant, copper had the lowest initial discharging voltage and followed by silver, graphite, lead, iron, tungsten, aluminum. The initial discharging voltage of carbon nanotubes which was used as the negative electrode to generate NAIs can be under 0.2 kV that was much lower than the initial discharging voltage of the experimental metal electrode. At relative humidity 40%, ozone was generated at 0.5 ppb when NAI concentration was about 6.3*105 ion/cm3. At relative humidity 70%, ozone was generated at 0.5 ppb when ...
نوع الوثيقة: thesis
وصف الملف: 5833042 bytes; application/pdf
اللغة: Chinese
English
العلاقة: 參考文獻 Bonard, J. M., F. Marier, T. Stockli, , A. Chatelain, Walt A. de Heer, J. P. Salvetat, L. Forro, “ Field Emission Properties of Multiwalled Carbon Nanotubes,” ultramicroscopy , 73, 7-15 (1998). Bracken, T. D., Small Air Ion Properties, Chapter 1, l-12, CRC Press, Boca Raton, FL (1987). Charry, J. M. and R. Kvet, Air Ions: Physical and Biological Aspects, Boca Raton, FL: CRC Press (1987). Che, J., T. Cagın, W. A. Goddard, “ Thermal Conductivity of Carbon Nanotubes,” Nanotechnology, 11, 65–69 (2000). Chen, J. and P. Wang, “ Effect of Relative Humidity on Electron Distribution and Ozone Production by DC Coronas in Air,” IEEE Transactions on Plasma Science, 33, 808-812 (2005). Chico, L., L. X. Benedict, S. G. Louie, M. L. Cohen, “ Quantum Conductance of Carbon Nanotubes with Defects,” Physical Review B, 54, 2600 (1996). Collins, P. G., M. S. Arnold, P. Avouris, “ Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science, 292, 706-709 (2001). Collins, P.G. and P. Avouris, “ Nanotubes for Electronics.” Scientific American, 283, 6 (2000). Dillon, A. C., K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, “ Storage of Hydrogen in Single-Walled Carbon Nanotubes,” Nature, 386, 377 (1997). Dresselhaus, M., G. Dresselhaus, P. Eklund, R. Saito, Carbon nanotubes, Physics World, January (1998). http://physicsweb.org/articles/world/11/1/9/1#world-11-1-9-1Test Eswaramoorthy, M., R. Sen, C. N. R. Rao, “ A Study of Micropores in Single-Walled Carbon Nanotubes by the Adsorption of Gases and Vapors,” Chemical Physics Letters, 304, 207–210 (1999). Frank, S., P. Poncharal, Z. L. Wang, Walt A. de Heer, “ Carbon Nanotube Quantum Resistors,” Science, 280, 1744, (1998). Gao, G., T. Cagın and W. A. Goddard, “ Energetic, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes,” Nanotechnology, 9, 184–191 (1998). Guo, T., P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “ Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization,” Chemical Physics Letters, 243, 49-54 (1995). Hawkins, L. H., and T. Barker, “ Air Ions and Human Performance,” Ergonomics, 21(4), 273-278, (1978). Hou, Q., X. Lu, X. Liu, B. Hu, J. Shena, “ Study of Influence on the Surface Energy Heterogeneity of Multiwalled Carbon Nanotubes after the Adsorption of Poly(Acrylic Acid),” Journal of Colloid and Interface Science, 278, 299–303 (2004). Iijima, S., “ Helical Microtubules of Graphitic Carbon,” Nature, 354, 56 (1991). Ingold, K. U., Oxidative Stress, Stacie Institute for Molecular Sciences, http://www.sirns/nrc.ca/report99.pdfTest, 4-5 (1999). Iwama, H., “ Negative Air Ions Created by Water Shearing Improve Erythrocyte Deformability and Aerobic Metabolism,” Indoor Air, 293-297, (2004). Jiang, Y., H. Qingfeing, L. Baolei, S. Jian, L. Sicong, “ Platelet Adhesive Resistance of Polyurethane Surface Grafted with Zwitterions of Sulfobetaine,” Colloids and Surfaces B: Biointerfaces, 36, 19-26 (2004). Journet, C. and P. Bernier, “ Production of Carbon Nanotubes,” Appl. Phys. A, 67, 1-9 (1998). Kondrashova, M. N., E. V. Grigorenko, A. N. Tikhonov, T. V. Sirota, A. V. Temnov, I. G. Stavrovskaja, N. I. Kosyakova, N. V. Lange, V. P. Tikhonov, “ The Primary Physico-Chemical Mechanism for the Beneficial Biological/Medical Effects of Negative Air Ions,” IEEE Transactions on Plasma Science, 28, 230-237 (2000). Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “ C60:Buckminsterfullerene,” Nature, 318, 122-123 (1985). Krueger, A. P. and E. J. Reed, “ Biological Impact of Small Air Ions,” Science, 193, 1209-1213 (1976). Lance, W., “ Indoor Particles: A Review,” Journal of the Air and Waste Management Association, 46, 98-126 (1996). Liu, C., Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Dresselhaus, “ Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature,” Science, 286,1127-1129 (1999). Matsumoto, K., S. Kinosita, Y. Gotoh, T. Uchiyama, S. Manalis, C. Quate, “ Ultralow Biased Field Emitter Using Single-Wall Carbon Nanotube Directly Grown onto Silicon Tip by Thermal Chemical Vapor Deposition,” Applied Physics Letters, 78, 539-540 (2001). Nakane, H., O. Asami, Y. Yamada, H. Ohira, “ Effect of Negative Air Ions on Computer Operation, Anxiety and Salivary Chromogranin A-Like Immunoreactivity,” International Journal of Psychophysiology, 46, 85-89 (2002). Park, Y. S., K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y. S. Lee, G. S. Park, Y. H. Lee, “ Low Pressure Synthesis of Single-Walled Carbon Nanotubes by Arc Discharge,” Synthetic Metals, 126, 245-251 (2002). Pederson, M. R. and J. Q. Broughton, “ Nanocapillarity in Fullerene Tubules,” Physical Review Letters, 69, 2689-2692 (1992). Peigney, A., C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset, “ Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes,” Carbon, 39, 507–514 (2001). Pontiga, F., C. Soria, A. Castellaanos, “ Electrical and Chemical Model of Negative Corona in Oxygen at Atmospheric Pressure,” Journal of Electrostatics, 40-41, 115-120 (1997). Popov, V. N., “ Carbon Nanotubes: Properties and Application,” Materials Science and Engineering R43, 61-102 (2004). Rice University:Rick Smalley’s Group Home Page-Image Gallery Robinson, J. and W. C. Nelson, National Human Activity Pattern Survey Data Base. United States Environmental Protection Agency, Research Triangle Park, NC (1995). Ryushi, T., Ichirou. Kita, T. Sakurai, A. Yasumatsu, M. Isokawa, Y. Aihara, K. Hama, “ The Effect of Exposure to Negative Air Ions on the Recovery of Physiological Responses after Moderate Endurance Exercise,” Int J Biometeorol, 41, 132-136 (1998). Service, R. F., “ Superstrong Nanotubes Show They Are Smart, Too,” Science, New Series, 281, 940 (1998). Skulachev, V.P., “ Biochemical Mechanisms of Evolution and the Role of Oxygen,” http://protein.bio.msu/sUIbiokhirniya/contents/v63/fu1I/63111570.htmlTest. Smirnov, B.M., “ Cluster Ions and Van der Waals Molecules,” Gordon and Breach, Philadelphia, 18-24 (1992). Stacy, L. D., “ Air Ionization of Indoor Environments for Control of Volatile and Plasma Generated by Dielectric-Barrier Discharge,” IEEE Transactions on Plasma Science, 30(4), 1471-1481 (2002). Stacy, L.D., “ Engineered Solutions for Mitigation of IAQ Problems,” Proceeding Second NSF International Conference on Indoor Air Health, 243-249 (2001). Stavrovskaya, I.G., “ Optimization of Energy Dependent Processes in Mitochondria after Inhalation of Negative Air Ions,” Biofizika, 43, 766-771 (1998). Tammet, H., “ Geophysics, Astronomy, and Acoustics, Atmospheric Electricity, B. Air Ions,” CRC Handbook of Chemistry & Physics, 14, 30-32 (1997). Tom, G., M. F. Poll, J. Galla, J. Berrier, “ The Influence of Negative Air Ions on Human Performance and Mood”, Human Factors, 23, 633-636 (1981) Treacy, M. M. J., T. W. Ebbesen, J. M. Gibson, “ Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes,” Nature, 381, 678-680 (1996). Weber, J. M., J. A. Kelly, S. B. Nielsen, P. Ayotte, M. A. Johnson, “ Isolating the Spectroscopic Signature of a Hydration Shell with the Use of Clusters: Superoxide Tetra hydrate,” Science, 287, 2461-2463 (2000). White, C. T. and T. N. Todorov, “ Nanotubes Go Ballistic,” Nature, 411, 649-651, (2001). Yakobson, B. I., C. J. Brabec, J. Bernholc, “ Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response,” Physical Review Letters, 76, 2512-2514 (1996). Yates, A., F. B. Gary, J. I. Misiaszek, “ Air Ions: Past Problems and Future Directions,’’ Environ. Int., 12, 99-108 (1986). Yu, M. F., O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “ Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, 287, 637-640 (2000). Zhu, S., C. H. Su, J. C. Cochrane, S. Lehoczhy, Y. Cui, A. Burger, “ Growth Orientation of Carbon Nanotubes by Thermal Chemical Vapor Deposition,” Journal of crystal Growth, 234, 584-588 (2002). 成會明編著,張勁燕校訂,陳佩芬編輯,奈米碳管,五南圖書出版股份有限公司2004年2月 行政院環保署室內空氣品質資訊網 http://www.indoorair.org.twTest/ 吳致呈,空氣負離子控制室內空氣污染物之研究,博士論文,台大環境工程研究所,2006 李芝珊,室內空氣品質與辦公大樓病態建築物症候群相關性質探討,生命科學簡訊,第13卷2期(民國88年2月) 陳彥宏,柑橘類植物果皮之超氧化物歧化酶(SOD)活性之研究,碩士論文,國立台灣大學醫學院藥理學研究所,1998 陳鴻賓、高道德,金屬物理性能及試驗,全華科技圖書股份有限公司1986年11月 機械工程手冊/電機工程手冊編輯委員會編著,金屬材料,機械工程手冊3,五南圖書出版股份有限公司2002年1月 機械工程手冊/電機工程手冊編輯委員會編著,非金屬材料,機械工程手冊4,五南圖書出版股份有限公司2002年1月 顏麗凰,利用水滴破碎產生空氣負離子之研究,碩士論文,台大環境工程研究所,2004; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/62798Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/62798/1/ntu-96-R94541127-1.pdfTest
الإتاحة: http://ntur.lib.ntu.edu.tw/handle/246246/62798Test
http://ntur.lib.ntu.edu.tw/bitstream/246246/62798/1/ntu-96-R94541127-1.pdfTest
رقم الانضمام: edsbas.A44EA16F
قاعدة البيانات: BASE