The Effect of the Spin-Forbidden Co((sup 1) Sigma plus) plus O((sup 3) P) Yields CO2 (1 Sigma (sub G) plus) Recombination Reaction on Afterbody Heating of Mars Entry Vehicles

التفاصيل البيبلوغرافية
العنوان: The Effect of the Spin-Forbidden Co((sup 1) Sigma plus) plus O((sup 3) P) Yields CO2 (1 Sigma (sub G) plus) Recombination Reaction on Afterbody Heating of Mars Entry Vehicles
المؤلفون: Schwenke, David W., Xu, Lu T., Panesi, Marco, Jaffe, Richard L.
المصدر: CASI
سنة النشر: 2017
المجموعة: NASA Technical Reports Server (NTRS)
مصطلحات موضوعية: Fluid Mechanics and Thermodynamics, Lunar and Planetary Science and Exploration
جغرافية الموضوع: Unclassified, Unlimited, Publicly available
الوصف: Vibrationally excited CO2, formed by two-body recombination from CO((sup 1) sigma plus) and O((sup 3) P) in the wake behind spacecraft entering the Martian atmosphere reaction, is potentially responsible for the higher than anticipated radiative heating of the backshell, compared to pre-flight predictions. This process involves a spin-forbidden transition of the transient triplet CO2 molecule to the longer-lived singlet. To accurately predict the singlet-triplet transition probability and estimate the thermal rate coefficient of the recombination reaction, ab initio methods were used to compute the first singlet and three lowest triplet CO2 potential energy surfaces and the spin-orbit coupling matrix elements between these states. Analytical fits to these four potential energy surfaces were generated for surface hopping trajectory calculations, using Tully's fewest switches surface hopping algorithm. Preliminary results for the trajectory calculations are presented. The calculated probability of a CO((sup 1) sigma plus) and O((sup 3) P) collision leading to singlet CO2 formation is on the order of 10 (sup -4). The predicted flowfield conditions for various Mars entry scenarios predict temperatures in the range of 1000 degrees Kelvin - 4000 degrees Kelvin and pressures in the range of 300-2500 pascals at the shoulder and in the wake, which is consistent with a heavy-particle collision frequency of 10 (sup 6) to 10 (sup 7) per second. Owing to this low collision frequency, it is likely that CO((sup 1) sigma plus) molecules formed by this mechanism will mostly be frozen in a highly nonequilibrium rovibrational energy state until they relax by photoemission.
نوع الوثيقة: other/unknown material
وصف الملف: application/pdf
اللغة: unknown
العلاقة: Document ID: 20170010268; http://hdl.handle.net/2060/20170010268Test
الإتاحة: http://hdl.handle.net/2060/20170010268Test
حقوق: Copyright, Public use permitted
رقم الانضمام: edsbas.D6819ED5
قاعدة البيانات: BASE