يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Glucagon-Like Peptide-1 Receptor"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2022); 148-155 ; Медицинский Совет; № 23 (2022); 148-155 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7307/6529Test; Маевская М.В., Котовская Ю.В., Ивашкин В.Т., Ткачева О.Н., Трошина Е.А., Шестакова М.В. и др. Национальный Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022;(2):216–253. https://doi.org/10.26442/00403660.2022.02.201363Test.; Бабенко А.Ю., Лаевская М.Ю. Неалкогольная жировая болезнь печени – взаимосвязи с метаболическим синдромом. РМЖ. 2018;(1):34–40. Режим доступа: https://www.rmj.ru/articles/endokrinologiya/Nealkogolynaya_ghirovaya_bolezny_pecheni_vzaimosvyazi_s_metabolicheskim_sindromomTest.; Pierantonelli I., Svegliati-Baroni G. Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation. 2019;103(1):e1–e13. https://doi.org/10.1097/TP.0000000000002480Test.; Day C.P., James O.F.W. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–845. https://doi.org/10.1016/s0016-5085Test(98)70599-2.; Caligiuri A., Gentilini A., Marra F. Molecular pathogenesis of NASH. Int J Mol Sci. 2016;17(9):1575. https://doi.org/10.3390/ijms17091575Test.; Ouyang X., Cirillo P., Sautin Y., McCall S., Bruchette J.L., Diehl A.M. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993–999. https://doi.org/10.1016/j.jhep.2008.02.011Test.; Tappy L., Lê K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90(1):23–46. https://doi.org/10.1152/physrev.00019.2009Test.; Jegatheesan P., De Bandt J.P. Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. 2017;9(3):230. https://doi.org/10.3390/nu9030230Test.; Chandrasekaran K., Swaminathan K., Chatterjee S., Dey A. Apoptosis in HepG2 cells exposed to high glucose. Toxicol in Vitro. 2010;24(2):387–396. https://doi.org/10.1016/j.tiv.2009.10.020Test.; Civera M., Urios A., Garcia-Torres M.L., Ortega J., Martinez-Valls J., Cassinello N. et al. Relationship between insulin resistance, inflammation and liver cell apoptosis in patients with severe obesity. Diabetes Metab Res Rev. 2010;26(3):187–192. https://doi.org/10.1002/dmrr.1070Test.; Кучерявый Ю.А., Маевская Е.А., Ахтаева М.Л., Краснякова Е.А. Неалкогольный стеатогепатит и кишечная микрофлора: есть ли потенциал пребиотических препаратов в лечении? Медицинский совет. 2013;(2):46–51. Режим доступа: https://www.med-sovet.pro/jour/article/view/963/0Test.; Gambino R., Bugianesi E., Rosso C., Mezzabotta L., Pinach S., Alemanno N. et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. Int J Mol Sci. 2016;17(4):479. https://doi.org/10.3390/ijms17040479Test.; Салль Т.С., Щербакова Е.С., Ситкин С.И., Вахитов Т.Я., Бакулин И.Г., Демьянова Е.В. Молекулярные механизмы развития неалкогольной жировой болезни печени. Профилактическая медицина. 2021;(4):120–131. https://doi.org/10.17116/profmed202124041120Test.; Bae C.S., Park S.H. The involvement of p38 MAPK and JNK activation in palmitic acid-induced apoptosis in rat hepatocytes. Journal of Life Science. 2009;19(8):1119–1124.; Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–2223. https://doi.org/10.1152/physrev.00063.2017Test.; Пеньков Д.Н., Егоров А.Д., Мозговая М.Н., Ткачук В.А. Связь инсулиновой резистентности с адипогенезом: роль транскрипционных и секретируемых факторов. Биохимия. 2013;(1):14–26. Режим доступа: https://biochemistrymoscow.com/ru/archive/2013/78-01-0014Test.; Qiang G., Kong H.W., Xu S., Pham H.A., Parlee S.D., Burr A.A. et al. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Mol Мetab. 2016;5(7):480–490. https://doi.org/10.1016/j.molmet.2016.05.005Test.; Wu X., Chen K., Williams K.J. The role of pathway-selective insulin resistance and responsiveness in diabetic dyslipoproteinemia. Curr Opin Lipidol. 2012;23(4):334–344. https://doi.org/10.1097/MOL.0b013e3283544424Test.; Abulizi A., Perry R.J., Camporez J.P.G., Jurczak M.J., Petersen K.F., Aspichueta P. et al. A controlled‐release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB J. 2017;31(7):2916–2924. https://doi.org/10.1096/fj.201700001RTest.; Bechmann L.P., Hannivoort R.A., Gerken G., Hotamisligil G.S., Trauner M., Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4):952–964. https://doi.org/10.1016/j.jhep.2011.08.025Test.; Mota M., Banini B.A., Cazanave S.C., Sanyal A.J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–1061. https://doi.org/10.1016/j.metabol.2016.02.014Test.; Brandi G., Lorenzo S.D., Candela M., Pantaleo M.A., Bellentani S., Tovoli F. et al. Microbiota, NASH, HCC and the potential role of probiotics. Carcinogenesis. 2017;38(3):231–240. https://doi.org/10.1093/carcin/bgx007Test.; Monsour Jr.H.P., Frenette C.T., Wyne K. Fatty liver: a link to cardiovascular disease–its natural history, pathogenesis, and treatment. Methodist Debakey Cardiovasc J. 2012;8(3):21. https://doi.org/10.14797/mdcj-8-3-21Test.; Buechler C., Wanninger J., Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 2011;17(23):2801. https://doi.org/10.3748/wjg.v17.i23.2801Test.; Engel J.A., Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs. 2014;28(10):875–886. https://doi.org/10.1007/s40263-014-0178-yTest.; Кытикова О.Ю., Новгородцева Т.П., Денисенко Ю.К., Антонюк М.В., Гвозденко Т.А. Толл-подобные рецепторы в патофизиологии ожирения. Ожирение и метаболизм. 2020;(1):56–63. https://doi.org/10.14341/omet10336Test.; Dube P.E., Brubaker P.L. Nutrient, neural and endocrine control of glucagon-like peptide secretion. Horm Metab Res. 2004;36(11–12):755–760. https://doi.org/10.1055/s-2004-826159Test.; Галстян Г.Р., Каратаева Е.А., Юдович Е.А. Эволюция агонистов рецепторов глюкагоноподобного пептида-1 в терапии сахарного диабета 2-го типа. Сахарный диабет. 2017;(4):286–298. https://doi.org/10.14341/DM8804Test.; Раскина К. Долгоживущий человеческий аналог ГПП-1. Актуальная эндокринология. 2015;6(1). Режим доступа: https://actendocrinology.ru/archives/2507Test.; Халимов Ю.Ш., Кузьмич В.Г. Органопротективные эффекты агонистов рецепторов глюкагоноподобного пептида 1-го типа по результатам доказательных исследований сердечно-сосудистой безопасности. Медицинский совет. 2019;(21):189–197. https://doi.org/10.21518/2079-701X-2019-21-189-197Test.; Scrocchi L.A., Brown T.J., Maclusky N., Brubaker P.L., Auerbach A.B., Joyner A.L., Drucker D.J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Мed. 1996;2(11):1254–1258. https://doi.org/10.1038/nm1196-1254Test.; Buteau J. GLP-1 receptor signaling: effects on pancreatic β-cell proliferation and survival. Diabetes Мetab. 2008;34(Suppl. 2):S73–77. https://doi.org/10.1016/S1262-3636Test(08)73398-6.; Fehmann H.C., Habener J.F. Insulinotropic hormone glucagon-like peptide-I (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology. 1992;130(1):159–166. https://doi.org/10.1210/endo.130.1.1309325Test.; Campbell J.E., Drucker D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–837. https://doi.org/10.1016/j.cmet.2013.04.008Test.; Cryer P.E. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology. 2012;153(3):1039–1048. https://doi.org/10.1210/en.2011-1499Test.; Buse J.B., Sesti G., Schmidt W.E., Montanya E., Chang C.T., Xu Y. et al. Switching to once-daily liraglutide from twice-daily exenatide further improves glycemic control in patients with type 2 diabetes using oral agents. Diabetes Care. 2010;33(6):1300–1303. https://doi.org/10.2337/dc09-2260Test.; Henry R.R., Buse J.B., Sesti G., Davies M.J., Jensen K.H., Brett J. et al. Efficacy of Anti Hyperglycemic Therapies and the Influence of Baseline Hemoglobin A1C: A Meta-Analysis of the Liraglutide Development Program. Endocr Pract. 2011;17(6):906–913. https://doi.org/10.4158/ep.17.6.906Test.; Monami M., Dicembrini I., Nreu B., Andreozzi F., Sesti G., Mannucci E. Predictors of response to glucagon-like peptide-1 receptor agonists: a meta-analysis and systematic review of randomized controlled trials. Acta Diabetol. 2017;54(12):1101–1114. https://doi.org/10.1007/s00592-017-1054-2Test.; Fan H., Pan Q.R., Xu Y., Yang X.C. Exenatide improves type 2 diabetes concomitant with non-alcoholic fatty liver disease. Arq Bras de Endocrinol Metabol. 2013;57(9):702–708. https://doi.org/10.1590/s0004-27302013000900005Test.; Cusi K., Sattar N., García-Pérez L.-E., Pavo I., Yu M., Robertson K.E. et al. Dulaglutide decreases plasma aminotransferases in people with Type 2 diabetes in a pattern consistent with liver fat reduction: a post hoc analysis of the AWARD programme. Diab Med. 2018;35(10):1434–1439. https://doi.org/10.1111/dme.13697Test.; Aroda V.R., Rosenstock J., Terauchi Y., Altuntas Y., Lalic N.M., Morales Villegas E.C. et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care. 2019;42(9):1724–1732. https://doi.org/10.2337/dc19-0749Test.; Гоникова З.З., Никольская А.О., Кирсанова Л.А., Шагидулин М.Ю., Онищенко Н.А., Севастьянов В.И. Сравнительный анализ эффективности стимуляции процессов регенерации печени клетками костного мозга и общей РНК этих клеток. Вестник трансплантологии и искусственных органов. 2019;(1):113–121. https://doi.org/10.15825/1995-1191-2019-1-113-121Test.; Feng W., Bi Y., Li P., Yin T.T., Gao C.X., Shen S.M. et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non‐alcoholic fatty liver disease. J Diabetes. 2017;9(8):800–809. https://doi.org/10.1111/jdi.12888Test.; Gluud L.L., Knop F.K., Vilsbоll T. Effects of lixisenatide on elevated liver transaminases: systematic review with individual patient data meta-analysis of randomised controlled trials on patients with type 2 diabetes. BMJ Open. 2014;4(12):e005325. https://doi.org/10.1136/bmjopen-2014-005325Test.; Sjоberg K.A., Holst J.J., Rattigan S., Richter E.A., Kiens B. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. Am J Physiol Endocrinol Metab. 2014;306(4):E355–E362. https://doi.org/10.1152/ajpendo.00283.2013Test.; Nogueiras R., Pérez-Tilve D., Veyrat-Durebex C., Morgan D.A., Varela L., Haynes W.G. et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci. 2009;29(18):5916–5925. https://doi.org/10.1523/JNEUROSCI.5977-08.2009Test.; Richards P., Parker H.E., Adriaenssens A.E., Hodgson J.M., Cork S.C., Trapp S. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014;63(4):1224–1233. https://doi.org/10.2337/db13-1440Test.; Baggio L.L., Ussher J.R., McLean B.A., Cao X., Kabir M.G., Mulvihill E.E. et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol Metab. 2017;6(11):1339–1349. https://doi.org/10.1016/j.molmet.2017.08.010Test.; Szablowski J.O., Lee-Gosselin A., Lue B., Malounda D., Shapiro M.G. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng. 2018;2(7):475–484. https://doi.org/10.1038/s41551-018-0258-2Test.; Ерофеев А.И., Матвеев М.В., Терехин С.Г., Захарова О.А., Плотникова П.В., Власова О.Л. Оптогенетика – новый метод исследования нейрональной активности. Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. 2015;(3):61–74. Режим доступа: https://physmath.spbstu.ru/article/2015.29.7Test.; Gaykema R.P., Newmyer B.A., Ottolini M., Raje V., Warthen D.M., Lambeth P.S. et al. Activation of murine pre-proglucagon – producing neurons reduces food intake and body weight. J Сlin Invest. 2017;127(3):1031–1045. https://doi.org/10.1172/JCI81335Test.; Burmeister M.A., Ayala J.E., Smouse H., Landivar-Rocha A., Brown J.D., Drucker D.J. et al. The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes. 2017;66(2):372–384. https://doi.org/10.2337/db16-1102Test.; Kooijman S., Wang Y., Parlevliet E.T., Boon M.R., Edelschaap D., Snaterse G. et al. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia. 2015;58(11):2637–2646. https://doi.org/10.1007/s00125-015-3727-0Test.; Lockie S.H., Heppner K.M., Chaudhary N., Chabenne J.R., Morgan D.A., Veyrat-Durebex C. et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61(11):2753–2762. https://doi.org/10.2337/db11-1556Test.; Beiroa D., Imbernon M., Gallego R., Senra A., Herranz D., Villarroya F. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63(10):3346–3358. https://doi.org/10.2337/db14-0302Test.; Brierley D.I., de Lartigue G. Reappraising the role of the vagus nerve in GLP‐1‐mediated regulation of eating. Br J Pharmacol. 2022;179(4):584–599. https://doi.org/10.1111/bph.15603Test.; Frias J.P., Bonora E., Ruiz L.N., Li Y.G., Yu Z., Milicevic Z. et al. Efficacy and safety of dulaglutide 3.0 mg and 4.5 mg versus dulaglutide 1.5 mg in metformin-treated patients with type 2 diabetes in a randomized controlled trial (AWARD-11). Diabetes Care. 2021;44(3):765–773. https://doi.org/10.2337/dc20-1473Test.; Newsome P.N., Buchholtz K., Cusi K., Linder M., Okanoue T., Ratziu V. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384(12):1113–1124. https://doi.org/10.1056/NEJMoa2028395Test.; O’Neil P.M., Birkenfeld A.L., McGowan B., Mosenzon O., Pedersen S.D., Wharton S. et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. 2018;392(10148):637–649. https://doi.org/10.1016/S0140-6736Test(18)31773-2.; Lomonaco R., Leiva E.G., Bril F., Shrestha S., Mansour L., Budd J. et al. Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: the need for systematic screening. Diabetes Care. 2021;44(2):399–406. https://doi.org/10.2337/dc20-1997Test.; Seko Y., Sumida Y., Tanaka S., Mori K., Taketani H., Ishiba H. et al. Effect of 12‐week dulaglutide therapy in Japanese patients with biopsy‐proven non‐alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol Res. 2017;47(11):1206–1211. https://doi.org/10.1111/hepr.12837Test.; Mantovani A., Petracca G., Beatrice G., Csermely A., Lonardo A., Targher G. Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites. 2021;11(2):73. https://doi.org/10.3390/metabo11020073Test.; Patel Chavez C., Cusi K., Kadiyala S. The emerging role of glucagon-like Peptide-1 receptor agonists for the management of NAFLD. J Clin Endocrinol Metab. 2022;107(1):29–38. https://doi.org/10.1210/clinem/dgab578Test.; Ghosal S., Datta D., Sinha B. A meta-analysis of the effects of glucagon-like-peptide 1 receptor agonist (GLP1-RA) in nonalcoholic fatty liver disease (NAFLD) with type 2 diabetes (T2D). Sci Rep. 2021;11(1):1–8. https://doi.org/10.1038/s41598-021-01663-yTest.; https://www.med-sovet.pro/jour/article/view/7307Test

  2. 2
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2023); 264-273 ; Медицинский Совет; № 6 (2023); 264-273 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7275/6501Test; Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104–112. https://doi.org/10.14341/DM2004116-17Test.; Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. https://doi.org/10.14341/DM12759Test.; Diabetes Control and Complications Trial Research Group, Nathan D.M., Genuth S., Lachin J., Cleary P., Crofford O., Davis M. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–986. https://doi.org/10.1056/NEJM199309303291401Test.; Della Corte V., Tuttolomondo A., Pecoraro R., Di Raimondo D., Vassallo V., Pinto A. Inflammation, Endothelial Dysfunction and Arterial Stiffness as Therapeutic Targets in Cardiovascular Medicine. Curr Pharm Des. 2016;22(30):4658–4668. https://doi.org/10.2174/1381612822666160510124801Test.; Giblett J.P., Axell R.G., White P.A., Clarke S.J., McCormick L., Read P.A. et al. Glucagon-like peptide-1 derived cardioprotection does not utilize a KATP-channel dependent pathway: mechanistic insights from human supply and demand ischemia studies. Cardiovasc Diabetol. 2016;15:99. https://doi.org/10.1186/s12933-016-0416-3Test.; Nyström T., Gutniak M.K., Zhang Q., Zhang F., Holst J.J., Ahrén B., Sjöholm A. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287(6):E1209-15. https://doi.org/10.1152/ajpendo.00237.2004Test.; Aldiss P., Davies G., Woods R., Budge H., Sacks H.S., Symonds M.E. ‘Browning’ the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int J Cardiol. 2017;228:265–274. https://doi.org/10.1016/j.ijcard.2016.11.074Test.; Cabou C., Campistron G., Marsollier N., Leloup C., Cruciani-Guglielmacci C., Pénicaud L. et al. Brain glucagon-like peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity. Diabetes. 2008;57(10):2577–2587. https://doi.org/10.2337/db08-0121Test.; Deacon C.F. Therapeutic strategies based on glucagon-like peptide 1. Diabetes. 2004;53:2181–2189. https://doi.org/10.2337/diabetes.53.9.2181Test.; White J.R. A Brief History of the Development of Diabetes Medications. Diabetes Spectr. 2014;27(2):82–86. https://doi.org/10.2337/diaspect.27.2.82Test.; Gram D.X., Knudsen S.M., Nielsen F.S., Thygesen P., Reedtz-Runge S., Kruse T. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J Med Chem. 2015;58(18):7370–7380. https://doi.org/10.1021/acs.jmedchem.5b00726Test.; Sorli C., Harashima S.I., Tsoukas G.M., Unger J., Karsbøl J.D., Hansen T., Bain S.C. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017;5(4):251–260. https://doi.org/10.1016/S2213-8587Test(17)30013-X.; Ahrén B., Masmiquel L., Kumar H., Sargin M., Karsbøl J.D., Jacobsen S.H., Chow F. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): a 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017;5(5):341–354. https://doi.org/10.1016/S2213-8587Test(17)30092-X.; Ahmann A.J., Capehorn M., Charpentier G., Dotta F., Henkel E., Lingvay I. et al. Efficacy and Safety of Once-Weekly Semaglutide Versus Exenatide ER in Subjects With Type 2 Diabetes (SUSTAIN 3): A 56-Week, Open-Label, Randomized Clinical Trial. Diabetes Care. 2018;41(2):258–266. https://doi.org/10.2337/dc17-0417Test.; Aroda V.R., Bain S.C., Cariou B., Piletič M., Rose L., Axelsen M. et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as addon to metformin (with or without sulfonylureas) in insulinnaive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017;5(5):355–366. https://doi.org/10.1016/S2213-8587Test(17)30085-2.; Rodbard H.W., Lingvay I., Reed J., de la Rosa R., Rose L., Sugimoto D. et al. Semaglutide Added to Basal Insulin in Type 2 Diabetes (SUSTAIN 5): A Randomized, Controlled Trial. J Clin Endocrinol Metab. 2018;103(6):2291–2301. https://doi.org/10.1210/jc.2018-00070Test.; Marso S.P., Bain S.C., Consoli A., Eliaschewitz F.G., Jódar E., Leiter L.A. et al.; SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834–1844. https://doi.org/10.1056/NEJMoa1607141Test.; Pratley R.E., Aroda V.R., Lingvay I., Lüdemann J., Andreassen C., Navarria A., Viljoen A.; SUSTAIN 7 investigators. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018;6(4):275–286. https://doi.org/10.1016/S2213-8587Test(18)30024-X.; Lingvay I., Catarig A.M., Frias J.P., Kumar H., Lausvig N.L., le Roux C.W. et al. Efficacy and safety of once-weekly semaglutide versus daily canagliflozin as add-on to metformin in patients with type 2 diabetes (SUSTAIN 8): a double-blind, phase 3b, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(11):834–844. https://doi.org/10.1016/S2213-8587Test(19)30311-0.; Zinman B., Bhosekar V., Busch R., Holst I., Ludvik B., Thielke D. et al. Semaglutide once weekly as add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9) : a randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(5):356–367. https://doi.org/10.1016/S2213-8587Test(19)30066-X.; Capehorn M.S., Catarig A.M., Furberg J.K., Janez A., Price H.C., Tadayon S. et al. Efficacy and safety of once-weekly semaglutide 1.0 mg vs once-daily liraglutide 1.2 mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 2020;46(2):100–109. https://doi.org/10.1016/j.diabet.2019.101117Test.; Kaku K., Yamada Y., Watada H., Abiko A., Nishida T., Zacho J., Kiyosue A. Safety and efficacy of once-weekly semaglutide vs additional oral antidiabetic drugs in Japanese people with inadequately controlled type 2 diabetes: A randomized trial. Diabetes Obes Metab. 2018;20(5):1202–1212. https://doi.org/10.1111/dom.13218Test.; Chun J.H., Butts A. Long-acting GLP-1RAs: An overview of efficacy, safety, and their role in type 2 diabetes management. JAAPA. 2020;33(8):3–18. https://doi.org/10.1097/01Test. JAA.0000669456.13763.bd.; Arnett D.K., Blumenthal R.S., Albert M.A., Buroker A.B., Goldberger Z.D., Hahn E.J. et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74(10):e177-e232. https://doi.org/10.1016/j.jacc.2019.03.010Test.; Zelniker T.A., Wiviott S.D., Raz I., Im K., Goodrich E.L., Furtado R.H.M. et al. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus. Circulation. 2019;139(17):2022–2031. https://doi.org/10.1161/CIRCULATIONAHA.118.038868Test.; Pantalone K.M., Misra-Hebert A.D., Hobbs T.M., Ji X., Kong S.X., Milinovich A. et al. Antidiabetic treatment patterns and specialty care utilization among patients with type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):54. https://doi.org/10.1186/s12933-018-0699-7Test.; Шестакова М.В., Шамхалова М.Ш., Галстян Г.Р., Руяткина Л.А., Суплотова Л.А. Пероральный семаглутид – новая инновационная опция в терапии сахарного диабета 2 типа. Сахарный диабет. 2021;24(3):273–281. https://doi.org/10.14341/DM12790Test.; Rakipovski G., Rolin B., Nøhr J., Klewe I., Frederiksen K.S., Augustin R. et al. The GLP-1 Analogs Liraglutide and Semaglutide Reduce Atherosclerosis in ApoE-/- and LDLr-/- Mice by a Mechanism That Includes Inflammatory Pathways. JACC Basic Transl Sci. 2018;3(6):844–857. https://doi.org/10.1016/j.jacbts.2018.09.004Test.; Pratley R.E., Crowley M.J., Gislum M., Hertz C.L., Jensen T.B., Khunti K. et al. Oral Semaglutide Reduces HbA1c and Body Weight in Patients with Type 2 Diabetes Regardless of Background Glucose-Lowering Medication: PIONEER Subgroup Analyses. Diabetes Ther. 2021;12(4):1099–1116. https://doi.org/10.1007/s13300-020-00994-9Test.; Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486Test.; Introduction: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl. 1):1–2. https://doi.org/10.2337/dc19-SINT01Test.; American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl. 1):98–110. https://doi.org/10.2337/dc20-S009Test.; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 10-й выпуск. Сахарный диабет. 2021;24(Suppl. 1):1–148. https://doi.org/10.14341/DM12802Test.; https://www.med-sovet.pro/jour/article/view/7275Test

  3. 3
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 17 (2015); 108-113 ; Медицинский Совет; № 17 (2015); 108-113 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2015-17

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/435/435Test; Karim L, Bouxsein ML. Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone. 2015, 07, 028. pII: S8756-3282.; Nicodemus KK, Folsom AR. Iowa Women's Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001, 24: 1192-1197.; Inzerillo AM, Epstein S. Osteoporosis and diabetes mellitus. RevEndocr Metab Disord. 2004, 5: 261-268.; Leiding-Bruckner G., Ziegler R. Diabetes mellitus - a risk for osteoporosis? Exp Clin Endocrinol Diabetes. 2001, 109: S493-514.; Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. Journal of Bone and Mineral Research. 2013, 28(2): 313-324.; Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced crosslinks as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporosis International. 2006, 17(10): 1514-1523.; Vestergaard P, Rejnmark L & Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcified Tissue International. 2009, 84(1): 45-55.; Hough S, Pierroz D, Cooper C, Ferrari S. Mechanisms in endocrinology: Mechanisms and Evaluation of Bone Fragility in Type 1 Diabetes Mellitus. Eur J Endocrinol. 2015, 4(2): EJE-15-0820.; Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeo-stasis. Journal of Bone and Mineral Research. 2011, 26(4): 677-680.; Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G. Bone-specific insulin resistance disrupts whole-body glucose homeo-stasis via decreased osteocalcin activation. Journal of Clinical Investigation. 2014, 124(4): 1781-1793.; McNair P, Madsbad S, Christiansen C, Christensen MS, Faber OK, Binder C, Transbol I. Bone loss in diabetes: effects of metabolic state. Diabetologia. 1979, 17(5): 283-286.; Eknoyan G, Lewin A, Levin N. National Kidney Foundation. K/DOOI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. American Journal of Kidney Diseases. 2003, 42 S1-S202.; Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type; and type 2 diabetes - a meta-analysis. Osteoporosis International. 2007, 18(4): 427-444.; Khazai NB., Beck GR, and Umpierrez GE Diabetes and Fractures - An overshadowed association. Curr Opin Endocrinol Diabetes Obes. 2009, 16(6): 435-445.; Lee RH, Pieper CF, Colon-Emeric C. Functional Impairments Mediate Association Between Clinical Fracture Risk and Type 2 Diabetes Mellitus in Older Women. J Am Geriatr Soc. 2015, 63(8): 1546-1551.; Лесняк О.М., Никитинская О.А., Торопцова Н.В., Белая Ж.Е., Каронова Т.Л. и соавт. Профилактика, диагностика и лечение дефицита витамина D и кальция у взрослого населения России и пациентов с остеопорозом (по материалам клинических рекомендаций). Научно-практическая ревматология. 2015, 53(4): 403-408.; Mathen PG, Thabah MM, Zachariah B, Das AK. Decreased Bone Mineral Density at the Femoral Neck and Lumbar Spine in South Indian Patients with Type; Diabetes. J Clin Diagn Res. 2015, 9(9): OC08-12.; Benvenuti S, Cellai I, Luciani P, Deledda C, Baglioni S, Giuliani C, et al. Rosiglitazone stimulates adipo-genesis and decreases osteoblastogenesis in human mesenchymal stem cells. Journal of Endocrinological Investigation. 2007, 30(9): 26-30.; Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005, 48(7): 1292-1299.; Hegazy SK, Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmen-opausal diabetic women. J Bone Miner Metab. 2015, 33(2): 207-212.; Ma P, Gu B, Xiong W, Tan B, Geng W, Li J, Liu H, Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment. PLoS One. 2014, 9(11): e112243.; Ma P, Tan B, Liu H, Ma J, Gu B, Effect of glime-piride on the glucose uptake of rat mandibular osteoblasts in hyperglycemia. Hua Xi Kou Qiang Yi Xue Za Zhi. 2014, 32(2): 125-129.; Rajpathak SN, Fu C, Brodovicz KG, Engel SS, Lapane K, Sulfonylurea use and risk of hip fractures among elderly men and women with type 2 diabetes. Drugs Aging. 2015, 32(4): 321-327.; Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ & Christiansen C. Role of gastrointestinal hormones in postprandial reduction of bone resorption. Journal of Bone and Mineral Research. 2003. 18(12): 2180-2189.; Бабенко А.Ю., Неймарк А.Е., Анисимова К.А., Гринева Е.Н. Эффекты бариатрических операций на уровень гормонов, регулирующих массу тела. В чем основа успеха? Ожирение и метаболизм, 2014. 4: 3-11.; https://www.med-sovet.pro/jour/article/view/435Test