دورية أكاديمية

Microfluidic Studies on Minimum Miscibility Pressure for n-Decane and CO2

التفاصيل البيبلوغرافية
العنوان: Microfluidic Studies on Minimum Miscibility Pressure for n-Decane and CO2
المؤلفون: Dmitrii Pereponov, Michael Tarkhov, Desmond Batsa Dorhjie, Alexander Rykov, Ivan Filippov, Elena Zenova, Vladislav Krutko, Alexey Cheremisin, Evgeny Shilov
المصدر: Energies; Volume 16; Issue 13; Pages: 4994
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2023
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: lab on a chip, HPHT microfluidics, gas EOR, minimum miscibility pressure (MMP), slim-tube analogue
الوصف: Oil production is a complex process that can be made more efficient by applying gas enhanced oil recovery (EOR) methods. Thus, it is essential to know the minimum miscibility pressure (MMP) and minimum miscibility enrichment (MME) of gas in oil. Conventional slim-tube experiments for the measurement of MMP require hundreds of millilitres of real or recombined oil and last over 30 days. Advances in microfluidic technology allow the reduction of the amount of fluid and the time required in determining MMP (or MME), hence making the process rapid. In this study, we developed a microfluidic model with a stochastically distributed pore network, porosity of 74.6% and volume of 83.26 nanolitres. Although the volume was six orders of magnitude smaller than the slim tube, it retained the same proportions, guaranteeing a proper comparison between the tests. This microfluidic chip allowed the study of the MMP of n-decane with carbon dioxide at two different temperature conditions. The experimental results coincided with the results received both from conventional and microfluidic experiments. Furthermore, a numerical simulation of a section of the microfluidic model under the experimental conditions presented results within acceptable margins of the experimental ones. The results of the presented methodology indicate the potential to replace conventional technology for the measurement of MMP with microfluidic technology. Its promise lies in accelerating laboratory tests and increasing the reliability of experimental results and, subsequently, the quality of field gas EOR operations.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
العلاقة: H1: Petroleum Engineering; https://dx.doi.org/10.3390/en16134994Test
DOI: 10.3390/en16134994
الإتاحة: https://doi.org/10.3390/en16134994Test
حقوق: https://creativecommons.org/licenses/by/4.0Test/
رقم الانضمام: edsbas.7F3CB4FC
قاعدة البيانات: BASE