دورية أكاديمية

Investigation on effect of colloidal nano-silica on the strength and durability characteristics of red mud blended Portland cement paste through tortuosity ; Investigación sobre el efecto de la nanosílice coloidal en las características de resistencia y durabilidad de la pasta de cemento Portland mezclada con lodo rojo mediante estudios de tortuosidad

التفاصيل البيبلوغرافية
العنوان: Investigation on effect of colloidal nano-silica on the strength and durability characteristics of red mud blended Portland cement paste through tortuosity ; Investigación sobre el efecto de la nanosílice coloidal en las características de resistencia y durabilidad de la pasta de cemento Portland mezclada con lodo rojo mediante estudios de tortuosidad
المؤلفون: Athira, K., Shanmugapriya, T.
المصدر: Materiales de Construcción; Vol. 72 No. 347 (2022); e293 ; Materiales de Construcción; Vol. 72 Núm. 347 (2022); e293 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2022.v72.i347
بيانات النشر: Consejo Superior de Investigaciones Científicas
سنة النشر: 2022
المجموعة: Materiales de Construcción (E-Journal)
مصطلحات موضوعية: Porosity, Pore structure distribution, Tortuosity, Mechanical strength, Durability, Porosidad, Distribución de la estructura porosa, Tortuosidad, Resistencias mecánicas, Durabilidad
الوصف: A novel binder system for cement-based composites depending upon the strength and durability characteristics is introduced in this study. The possibility of calcined red mud cement pastes with and without colloidal nano-silica (CNS) over Ordinary Portland Cement paste (OPC) at three W/B ratios (0.3, 0.4, 0.5) is evaluated. The optimum percentage of cement replacement by red mud (15%) was selected from compressive strength values of different cement replacements (5%, 10%, 15%, and 20%). Colloidal nano-silica (CNS) was added at 0.5%, 1%, 1.5%, and 2 % to the selected red mud cement paste. Water absorption, sorptivity, resistance to sulfate attack, and resistance to acid attack tests were conducted for optimum red mud cement paste with and without CNS. The experimental results are explained based on tortuosity with empirical formulas and mathematical models of pore network distribution. The tortuosity is directly proportional to the inter-connectivity of the pores. The mixes with 15% calcined red mud and 1.5% CNS replacement performed better strength and durability at all W/B ratios. The mix (R15NS1.5) with minimum tortuosity value results in the higher overall performance of the paste. The mixes with a 0.3 W/B ratio give high-performance cement paste compared to higher W/B ratios. ; En este estudio se presenta un nuevo sistema aglomerante para compuestos en base cemento que depende de las características de resistencia y durabilidad. Se evalúa la posibilidad de incluir pastas de cemento de lodo rojo calcinado con y sin nanosílice coloidal (CNS) en pastas de cemento Portland ordinario (OPC) en tres relaciones a/b (0,3, 0,4, 0,5). El porcentaje óptimo de reemplazo de cemento por lodo rojo (15 %) se seleccionó de los valores de resistencia a la compresión obtenidos entre los diferentes reemplazos de cemento considerados (5 %, 10 %, 15 % y 20 %). Se añadió nanosílice coloidal (CNS) al 0,5 %, 1 %, 1,5 % y 2 % a la pasta de cemento de lodo rojo seleccionada. Se realizaron pruebas de absorción de agua, sorción, ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: text/html; application/pdf; text/xml
اللغة: English
العلاقة: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3021/3832Test; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3021/3833Test; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3021/3834Test; Aayog, N. (2019) Resource efficiency and circular economy -Current status and way forward.; Patel, S.; Pal, B.K. (2015) Current status of an industrial waste: Red mud an overview. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 4, 1-16. Retrieved from: https://paratechglobal.com/wp-content/uploads/2020/01/Current-Status-of-an-Industrial-Waste-Re.pdfTest.; Hyeok-Jung, K.; Kang, S-P.; Choe, G-C. (2018) Effect of red mud content on strength and efflorescence in pavement using alkali-activated slag cement. Int. J. Concr. Struct. Mater. 12, 18. https://doi.org/10.1186/s40069-018-0258-3Test; Krivenko, P.; Kovalchuk, O., Pasko, A.; Croymans, T.; Hult, M.; Lutter, G.; Vandevenne, N.; Schreurs, S.; Schroeyers, W. (2017) Development of alkali activated cements and concrete mixture design with high volumes of red mud. Constr. Build. Mater. 151, 819-826. https://doi.org/10.1016/j.conbuildmat.2017.06.031Test; Nikbin, I.M.; Aliaghazadeh, M.; Charkhtab, Sh.; Fathollahpour, A. (2016) Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud) J. Clean. Prod. 172, 2683-2694. https://doi.org/10.1016/j.jclepro.2017.11.143Test; de Oliveira Romano, R.C.; Bernardo, H.M.; Maciel, M.H.; Pileggi, R.G.; Cincotto, M.A. (2019) Using isothermal calorimetry, X-ray diffraction, thermogravimetry and FTIR to monitor the hydration reaction of Portland cements associated with red mud as a supplementary material. J. Therm. Anal. Calorim. 137, 1877-1890. https://doi.org/10.1007/s10973-019-08095-xTest; Tang, W.C.; Wang, Z.; Liu, Y.; Cui, H.Z. (2018) Influence of red mud on fresh and hardened properties of self-compacting concrete. Constr. Build. Mater. 178, 288-300. https://doi.org/10.1016/j.conbuildmat.2018.05.171Test; Yadav, V.S.; Prasad, M.; Khan, J.; Amritphale, S.S.; Singh, M.; Raju, C.B. (2010) Sequestration of carbon dioxide (CO2) using red mud. J. Hazard. Mater. 176, 1044-1050. https://doi.org/10.1016/j.jhazmat.2009.11.146Test PMid:20036053; Liu, R.X.; Poon, C-S. (2016) Utilization of red mud derived from bauxite in self-compacting concrete. J. Clean. Prod. 112, 384-391. https://doi.org/10.1016/j.jclepro.2015.09.049Test; Canbek, O.; Shakouri, S.; Erdoğan, S.T. (2020) Laboratory production of calcium sulfoaluminate cements with high industrial waste content. Cem. Concr. Compos. 106, 103475. https://doi.org/10.1016/j.cemconcomp.2019.103475Test; Dodoo-Arhin, D.; Nuamah, R.A.; Agyei-Tuffour, B.; Obada, D.O.; Yaya, A. (2017) Awaso bauxite red mud-cement based composites: Characterisation for pavement applications. Case Stud. Constr. Mater. 7, 45-55. https://doi.org/10.1016/j.cscm.2017.05.003Test; Wu, C-s.; Liu, D-y. (2012) Mineral phase and physical properties of red mud calcined at different temperatures. J. Nanomater. 2012, 628592. https://doi.org/10.1155/2012/628592Test; Ghalehnovi, M.; Roshan, N.; Hakak, E.; Shamsabadi, E.A.; de Brito, J. (2019) Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. J. Clean. Prod. 240, 118213. https://doi.org/10.1016/j.jclepro.2019.118213Test; Ghalehnovi, M.; Asadi Shamsabadi, E.; Khodabakhshian, A.; Sourmeh, F.; de Brito, J. (2019) Self-compacting architectural concrete production using red mud. Constr. Build. Mater. 226, 418-427. https://doi.org/10.1016/j.conbuildmat.2019.07.248Test; Hou, D.; Wu, D.; Wang, X.; Gao, S.; Yu, R.; Li, M., Wang, P.; Wang, Y. (2021) Sustainable use of red mud in ultra-high performance concrete (UHPC): Design and performance evaluation. Cem. Concr. Compos. 115, 103862. https://doi.org/10.1016/j.cemconcomp.2020.103862Test; Agrawal, V.; Paulose, R.; Arya, R.; Rajak, G.; Giri, A.; Bijanu, A.; Sanghi, S.K.; Mishra, D.; N, P.; Khare, A.K.; Parmar, V.; Khan, M.A.; Bhisikar, A.; Srivastava, A.K.; Thankaraj Salammal, S. (2022) Green conversion of hazardous red mud into diagnostic X-ray shielding tiles. J. Hazard. Mater. 424, 127507. https://doi.org/10.1016/j.jhazmat.2021.127507Test PMid:34879512; Matyka, M.; Koza, Z. (2011) How to calculate tortuosity easily? AIP Conf. Proc. 1453, 17-22. https://doi.org/10.1063/1.4711147Test; Kondraivendhan, B.; Sabet Divsholi, B.; Teng, S. (2013) Estimation of strength, permeability and hydraulic diffusivity of pozzolana blended concrete through pore size distribution. J. Adv. Concr. Technol. 11, 230-237. https://doi.org/10.3151/jact.11.230Test; Muthu, M.; Santhanam, M. (2018) Effect of reduced graphene oxide, alumina and silica nanoparticles on the deterioration characteristics of Portland cement paste exposed to acidic environment. Cem. Concr. Compos. 91, 118-137. https://doi.org/10.1016/j.cemconcomp.2018.05.005Test; Chithra, S.; Senthil Kumar, S.R.R.; Chinnaraju, K. (2016) The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate. Constr. Build. Mater. 113, 794-804. https://doi.org/10.1016/j.conbuildmat.2016.03.119Test; Kong, D.; Corr, D.J.; Hou, P.; Yang, Y.; Shah, S.P. (2015) Influence of colloidal silica sol on fresh properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale. Cem. Concr. Compos. 63, 30-41. https://doi.org/10.1016/j.cemconcomp.2015.08.002Test; Kong, D.; Pan, H.; Wang, L.; Corr, D.J.; Yang, Y.; Shah, S.P.; Sheng, J. (2019) Effect and mechanism of colloidal silica sol on properties and microstructure of the hardened cement-based materials as compared to nano-silica powder with agglomerates in micron-scale. Cem. Concr. Compos. 98, 137-149. https://doi.org/10.1016/j.cemconcomp.2019.02.015Test; Gaitero, J.J.; Campillo, I.; Guerrero, A. (2008) Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem. Concr. Res. 38, 1112-1118. https://doi.org/10.1016/j.cemconres.2008.03.021Test; Li, L.G.; Zheng, J.Y.; Ng, P.L.; Zhu, J.; Kwan, A.K.H. (2019) Cementing efficiencies and synergistic roles of silica fume and nano-silica in sulphate and chloride resistance of concrete. Constr. Build. Mater. 223, 965-975. https://doi.org/10.1016/j.conbuildmat.2019.07.241Test; IS 516. (2018) Method of tests for strength of concrete. Bur. Indian Stand. Dehli. 1-30.; ASTM C642. (1997) Standard test method for density, absorption, and voids in hardened concrete, ASTM International, United States. Annu. B. ASTM Stand. 1-3.; Casnedi, L.; Cocco, O.; Meloni, P.; Pia, G. (2018) Water absorption properties of cement pastes: Experimental and modelling inspections. Adv. Mater. Sci. Eng. 2018, 7679131. https://doi.org/10.1155/2018/7679131Test; Du, H.; Pang, S.D. (2019) High performance cement composites with colloidal nano-silica. Constr. Build. Mater. 224, 317-325. https://doi.org/10.1016/j.conbuildmat.2019.07.045Test; Venkatanarayanan, H.K.; Rangaraju, P.R. (2014) Evaluation of sulfate resistance of Portland cement mortars containing low-carbon rice husk ash. J. Mater. Civ. Eng. 26, 582-592. https://doi.org/10.1061Test/(ASCE)MT.1943-5533.0000868; Chen, F.; Gao, J.; Qi, B.; Shen, D. (2017) Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Constr. Build. Mater. 154, 849-856. https://doi.org/10.1016/j.conbuildmat.2017.08.017Test; Lee, S.T.; Moon, H.Y.; Swamy, R.N. (2005) Sulfate attack and role of silica fume in resisting strength loss. Cem. Concr. Compos. 27, 65-76. https://doi.org/10.1016/j.cemconcomp.2003.11.003Test; Chatveera, B.; Lertwattanaruk, P. (2009) Evaluation of sulfate resistance of cement mortars containing black rice husk ash. J. Environ. Manage. 90, 1435-1441. https://doi.org/10.1016/j.jenvman.2008.09.001Test PMid:19008031; Andrade, C.; D'Andrea, R.; Rebolledo, N. (2012) Calculation of tortuosity factor for the model based in concrete resistivity. Second Int. Conf. Microstruct. Durab. Cem. Compos. 11-13.; Powers, T.C. (1958) Structure and physical properties of hardened Portland cement paste. J. Am. Ceram. Soc. 41, 1-6. https://doi.org/10.1111/j.1151-2916.1958.tb13494.xTest; Yang, L.; Gao, D.; Zhang, Y.; Tang, J.; Li, Y. (2019) Relationship between sorptivity and capillary coefficient for water absorption of cement-based materials: theory analysis and experiment. R. Soc. Open Sci. 6, 190112. https://doi.org/10.1098/rsos.190112Test PMid:31312483 PMCid:PMC6599806; Kondraivendhan, B.; Bhattacharjee, B. (2010) Effect of age and water-cement ratio on size and dispersion of pores in ordinary portland cement paste. ACI Mater. J. 107, 147-154. https://doi.org/10.14359/51663578Test; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3021Test
DOI: 10.3989/mc.2022.01922
الإتاحة: https://doi.org/10.3989/mc.2022.01922Test
https://doi.org/10.3989/mc.2022.v72.i347Test
https://doi.org/10.1186/s40069-018-0258-3Test
https://doi.org/10.1016/j.conbuildmat.2017.06.031Test
https://doi.org/10.1016/j.jclepro.2017.11.143Test
https://doi.org/10.1007/s10973-019-08095-xTest
https://doi.org/10.1016/j.conbuildmat.2018.05.171Test
https://doi.org/10.1016/j.jhazmat.2009.11.146Test
https://doi.org/10.1016/j.jclepro.2015.09.049Test
https://doi.org/10.1016/j.cemconcomp.2019.103475Test
حقوق: Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC) ; https://creativecommons.org/licenses/by/4.0Test
رقم الانضمام: edsbas.DA4A20D2
قاعدة البيانات: BASE