دورية أكاديمية

Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles

التفاصيل البيبلوغرافية
العنوان: Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles
المؤلفون: Zonaro E., Piacenza E., Presentato A., Monti F., Dell'Anna R., Lampis S., Vallini G.
المساهمون: Zonaro E., Piacenza E., Presentato A., Monti F., Dell'Anna R., Lampis S., Vallini G.
بيانات النشر: BioMed Central Ltd.
GB
سنة النشر: 2017
المجموعة: IRIS Università degli Studi di Palermo
مصطلحات موضوعية: Aerobic selenite reduction, Aerobic tellurite reduction, Bacterial-metalloid interaction, Biogenically synthesized nanoparticle, Chalcogen metalloid, Ochrobactrum sp. MPV1, Rare earth oxyanion, Aerobiosi, Arsenical, Axenic Culture, Catalysi, Iron Compound, Italy, Metal Nanoparticle, Microscopy, Electron, Mineral, Ochrobactrum, Selenious Acid, Selenium, Sulfide, Tellurium, Settore BIO/19 - Microbiologia Generale, Settore CHIM/02 - Chimica Fisica
الوصف: Background: Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles-both inside and outside the cells-characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have attracted great interest due to their photoelectric and semiconducting properties. In addition, their exploitation as antimicrobial agents is currently becoming an area of intensive research in medical sciences. Results: In the present study, the bacterial strain Ochrobactrum sp. MPV1, isolated from a dump of roasted arsenopyrites as residues of a formerly sulfuric acid production near Scarlino (Tuscany, Italy) was analyzed for its capability of efficaciously bioreducing the chalcogen oxyanions selenite (SeO32-) and tellurite (TeO32-) to their respective elemental forms (Se0 and Te0) in aerobic conditions, with generation of Se- and Te-nanoparticles (Se- and TeNPs). The isolate could bioconvert 2 mM SeO32- and 0.5 mM TeO32- to the corresponding Se0 and Te0 in 48 and 120 h, respectively. The intracellular accumulation of nanomaterials was demonstrated through electron microscopy. Moreover, several analyses were performed to shed light on the mechanisms involved in SeO32- and TeO32- bioreduction to their elemental states. Results obtained suggested that these oxyanions are bioconverted through two different mechanisms in Ochrobactrum sp. MPV1. Glutathione (GSH) seemed to play a key role in SeO32- bioreduction, while TeO32- bioconversion could be ascribed to the catalytic activity of intracellular NADH-dependent ...
نوع الوثيقة: article in journal/newspaper
اللغة: English
العلاقة: info:eu-repo/semantics/altIdentifier/pmid/29183326; info:eu-repo/semantics/altIdentifier/wos/WOS:000416454700002; volume:16; issue:1; firstpage:1; lastpage:17; numberofpages:17; journal:MICROBIAL CELL FACTORIES; http://hdl.handle.net/10447/390777Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85036550785
DOI: 10.1186/s12934-017-0826-2
الإتاحة: https://doi.org/10.1186/s12934-017-0826-2Test
http://hdl.handle.net/10447/390777Test
حقوق: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.83B6CFF4
قاعدة البيانات: BASE