دورية أكاديمية

Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations

التفاصيل البيبلوغرافية
العنوان: Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations
المؤلفون: Sun C. -Y., Granasy L., Stifler C. A., Zaquin T., Chopdekar R. V., Tamura N., Weaver J. C., Zhang J. A. Y., Goffredo S., Falini G., Marcus M. A., Pusztai T., Schoeppler V., Mass T., Gilbert P. U. P. A.
المساهمون: Sun C.-Y., Granasy L., Stifler C.A., Zaquin T., Chopdekar R.V., Tamura N., Weaver J.C., Zhang J.A.Y., Goffredo S., Falini G., Marcus M.A., Pusztai T., Schoeppler V., Mass T., Gilbert P.U.P.A.
سنة النشر: 2021
المجموعة: IRIS Università degli Studi di Bologna (CRIS - Current Research Information System)
مصطلحات موضوعية: Acropora, Balanophyllia, Coral, Crystal growth, Crystal nucleation, Favia, Madraci, Micromussa, Montipora, Oculina, Phyllangia, Polymer, Porite, Semicrystalline, Spherulite, Sprinkle, Stylophora, Turbinaria, Calcification, Physiologic, Calcium Carbonate, Skeleton, Anthozoa
الوصف: Spherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO3) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them. In 7 of the 12 species, we observed a skeletal structural motif not observed previously: randomly oriented, equant crystals, which we termed “sprinkles”. In Acropora pharaonis, these sprinkles are localized at the CoCs, while in 6 other species, sprinkles are either layered at the growth front (GF) of the spherulites, or randomly distributed. At the nano- and micro-scale, coral skeletons fill space as much as single crystals of aragonite. Based on these observations, we tentatively propose a spherulite formation mechanism in which growth front nucleation (GFN) of randomly oriented sprinkles, competition for space, and coarsening produce spherulites, rather than the previously assumed slightly misoriented nucleations termed “non-crystallographic branching”. Phase-field simulations support this mechanism, and, using a minimal set of thermodynamic parameters, are able to reproduce all of the microstructural variation observed experimentally in all of the investigated coral skeletons. Beyond coral skeletons, other spherulitic systems, from aspirin to semicrystalline polymers and chocolate, may also form according to the mechanism for spherulite formation proposed here. Statement of Significance: Understanding the fundamental mechanisms of spherulite nucleation and growth has broad ranging applications in the fields of metallurgy, ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: STAMPA
اللغة: English
العلاقة: info:eu-repo/semantics/altIdentifier/pmid/32590171; info:eu-repo/semantics/altIdentifier/wos/WOS:000607920900002; volume:120; firstpage:277; lastpage:292; numberofpages:16; journal:ACTA BIOMATERIALIA; info:eu-repo/grantAgreement/EC/H2020/755876; http://hdl.handle.net/11585/862386Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85089094642
DOI: 10.1016/j.actbio.2020.06.027
الإتاحة: https://doi.org/10.1016/j.actbio.2020.06.027Test
http://hdl.handle.net/11585/862386Test
حقوق: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.57E1828E
قاعدة البيانات: BASE