دورية أكاديمية

Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour

التفاصيل البيبلوغرافية
العنوان: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour
المؤلفون: Matzavinos, Anastasios, Chaplain, Mark A. J., Kuznetsov, Vladimir A.
بيانات النشر: Oxford University Press
سنة النشر: 2004
المجموعة: HighWire Press (Stanford University)
مصطلحات موضوعية: Articles
الوصف: In this paper a mathematical model describing the growth of a solid tumour in the presence of an immune system response is presented. In particular, attention is focused upon the attack of tumour cells by so‐called tumour‐infiltrating cytotoxic lymphocytes (TICLs), in a small, multicellular tumour, without necrosis and at some stage prior to (tumour‐induced) angiogenesis. At this stage the immune cells and the tumour cells are considered to be in a state of dynamic equilibrium—cancer dormancy—a phenomenon which has been observed in primary tumours, micrometastases and residual disease after ablation of the primary tumour. Nonetheless, the precise biochemical and cellular mechanisms by which TICLs control cancer dormancy are still poorly understood from a biological and immunological point of view. Therefore we focus on the analysis of the spatio‐temporal dynamics of tumour cells, immune cells and chemokines in an immunogenic tumour. The lymphocytes are assumed to migrate into the growing solid tumour and interact with the tumour cells in such a way that lymphocyte‐tumour cell complexes are formed. These complexes result in either the death of the tumour cells (the normal situation) or the inactivation (sometimes even the death) of the lymphocytes. The migration of the TICLs is determined by a combination of random motility and chemotaxis in response to the presence of chemokines. The resulting system of four nonlinear partial differential equations (TICLs, tumour cells, complexes and chemokines) is analysed and numerical simulations are presented. We consider two different tumour geometries—multi‐layered cell growth and multi‐cellular spheroid growth. The numerical simulations demonstrate the existence of cell distributions that are quasi‐stationary in time and heterogeneous in space. A linear stability analysis of the underlying (spatially homogeneous) ordinary differential equation (ODE) kinetics coupled with a numerical investigation of the ODE system reveals the existence of a stable limit cycle. This is ...
نوع الوثيقة: text
وصف الملف: text/html
اللغة: English
العلاقة: http://imammb.oxfordjournals.org/cgi/content/short/21/1/1Test; http://dx.doi.org/10.1093/imammb/21.1.1Test
DOI: 10.1093/imammb/21.1.1
الإتاحة: https://doi.org/10.1093/imammb/21.1.1Test
http://imammb.oxfordjournals.org/cgi/content/short/21/1/1Test
حقوق: Copyright (C) 2004, Institute of Mathematics and its Applications
رقم الانضمام: edsbas.1354BB9E
قاعدة البيانات: BASE