دورية أكاديمية

Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils ; Detección de la adulteración de aceite de oliva mediante relaxometría magnética nuclear de campo bajo y espectroscopía UV-Vis sobre mezcla de aceite de oliva con diversos aceites comestibles

التفاصيل البيبلوغرافية
العنوان: Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils ; Detección de la adulteración de aceite de oliva mediante relaxometría magnética nuclear de campo bajo y espectroscopía UV-Vis sobre mezcla de aceite de oliva con diversos aceites comestibles
المؤلفون: Ok, S.
المصدر: Grasas y Aceites; Vol. 68 No. 1 (2017); e173 ; Grasas y Aceites; Vol. 68 Núm. 1 (2017); e173 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2017.v68.i1
بيانات النشر: Consejo Superior de Investigaciones Científicas
سنة النشر: 2017
المجموعة: Grasas y Aceites (E-Journal)
مصطلحات موضوعية: Adulteration detection, Low-field NMR relaxometry, Olive oil, UV-Vis spectroscopy, Aceite de oliva, Detección de adulteración, Espectroscopia UV-Vis, Relaxometría RMN de campo bajo
الوصف: Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. ; La adulteración del aceite de oliva con sustituyentes menos saludables es una amenaza para la salud pública. En este trabajo, la detección de la adulteración del aceite de oliva se demuestra utilizando tanto relaxometría magnética nuclear de campo bajo (LF) de protones (1H) (RMN) y espectroscopía visible y ultra-violeta (UV). Tres muestras de aceites de oliva con diferentes contenidos en oleico se mezclaron con aceites de almendra, ricino, maíz y sésamo con tres relaciones volumétricas. Además, el de arbequina de California se mezcló con cánola, lino, semilla de uva, cacahuete, soja y aceites de girasol con tres relaciones volumétricas. Las curvas de tiempo de relajación de magnetización transversal (T2) fueron ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: text/html; application/pdf; application/xml
اللغة: English
العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1639/2037Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1639/2038Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1639/2039Test; Agiomyrgianaki A, Petrakis PV, Dais P. 2010. Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis. Talanta 80, 2165–2171. https://doi.org/10.1016/j.talanta.2009.11.024Test PMid:20152467; Aursand IG, Gallart-Jornet L, Erikson U, Axelson DE, Rustad T. 2008. Water distribution in brine salted cod (Gadus morhua) and salmon (Salmo salar): A low-field 1H NMR study. J. Agric. Food Chem. 56, 6252–6260. https://doi.org/10.1021/jf800369nTest PMid:18598046; Cerretani L, Motilva MJ, Romero MP, Bendini A, Lercker G. 2008. Pigment profile and chromatic parameter of monovarietal olive oils from different Italian cultivars. Euro. Food Res. Tech. 226, 1251–1258. https://doi.org/10.1007/s00217-007-0651-7Test; Criado MN, Motilva MJ, Goni M, Romero MP. 2007. Comparative study of the effect of the maturation process of olive fruit on the chlorophyll and carotenoid fractions of drupes and virgin olive oils of Arbequina variety in Spain. Food Chem. 100, 748–755. https://doi.org/10.1016/j.foodchem.2005.10.035Test; Dourtoglou VG, Dourtoglou T, Antopoulos A, Stefanou E, Lalas S, Poulos C. 2003. Detection of olive oil adulteration using principal component analysis applied on total and region fa content. J. Am. Oil Chem. Soc. 80, 203–208. https://doi.org/10.1007/s11746-003-0677-1Test; Fuentes E, Baez ME, Bravo M, Cid C, Labra F. 2012. Determination of total phenolic content in olive oil samples by UV-visible spectrometry and multivariate calibration. Food Anal. Methods 5, 1311–1319. https://doi.org/10.1007/s12161-012-9379-5Test; Giuliani A, Cerretani L, Cichelli A. 2011. Chlorophylls in olive and in olive oil: chemistry and occurrences. Crit. Rev. Food Sci. 51, 678–690. https://doi.org/10.1080/10408391003768199Test PMid:21793727; Gurdeniz G, Ozen B. 2009. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem. 116, 519–525. https://doi.org/10.1016/j.foodchem.2009.02.068Test; Hansen CL, Thybo AK, Bertram HC, Viereck N, van den Berg F, Engelsen SB. 2010. Determination of dry matter content in potato tubers by low-field nuclear magnetic resonance (LF-NMR). J. Agric. Food Chem. 58, 10300–10304. https://doi.org/10.1021/jf101319qTest PMid:20853901; Hills BP. 2006. Applications of low-field NMR to food science. Annual Reports on NMR Spectroscopy 58, 177–230. https://doi.org/10.1016/S0066-4103Test(05)58004-9; Khattab R, Eskin M, Aliani M, Thiyam U. 2010. Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. J. Am. Oil Chem. Soc. 87, 147–155. https://doi.org/10.1007/s11746-009-1486-0Test PMid:20157351 PMCid:PMC2815801; Lerma-Garcia M, Simo-Alfonso EF, Chiavaro E, Bendini A, Lercker G, Cerretani L. 2009. Study of chemical changes produced in virgin olive oils with different phenolic contents during an accelerated storage treatment. J. Agr. Food Chem. 57, 7834–7840. https://doi.org/10.1021/jf901346nTest PMid:19681611; Lizhi H, Toyoda K, Ihara I. 2010. Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. J. Food Eng. 96, 167–171. https://doi.org/10.1016/j.jfoodeng.2009.06.045Test; Martens HJ, Thybo AK. 2000. An integrated microstructural, sensory and instrumental approach to describe potato texture. LWT—Food Sci. Technol. 33, 471–482.; Mendes TO, da Rocha RA, Porto BLS, de Oliveira MAL, dos Anjos VC, Bell MJV. 2015. Quantification of extra-virgin olive oil adulteration with soybean oil: a comparative study of NIR, MIR, and Raman spectroscopy associated with chemometric approaches. Food Anal. Methods 8, 2339–2346. https://doi.org/10.1007/s12161-015-0121-yTest; Mínguez-Mosquera MI. 1997. Clorofilas y carotenoides en tecnología de alimentos. Secretariado de publicaciones de la Universidad de Sevilla, Sevilla.; Moyano MJ, Heredia FJ, Meléndez-Martínez AJ. 2010. The color of olive oils: the pigments and their likely health benefits and visual and instrumental methods of analysis. Comp. Rev. Food Sci. Food Saf. 9, 278–291. https://doi.org/10.1111/j.1541-4337.2010.00109.xTest; Nunes, CA. 2014. Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats. Food Res. Int. 60, 255–261. https://doi.org/10.1016/j.foodres.2013.08.041Test; Ok, S. 2014. Fast screening of Turkish olive oil by NMR spectroscopy for geographical determination and discrimination purposes. Grasas Aceites 65, e024. https://doi.org/10.3989/gya.122413Test; Ok, S. 2016. Authentication of commercial extra virgin olive oils. J. Am. Oil Chem. Soc. 93, 489–497. https://doi.org/10.1007/s11746-016-2797-6Test; Passaloglou-Emmanouilidou S. 1990. A comparative study of UV spectrophotometric methods for detection of olive oil adulteration by refined oils. Z. Lebensm. Unters. Forsch. 191, 131–134. https://doi.org/10.1007/BF01202639Test; Provencher SW. 1982. A constrained regularization method for inverting data represented by linear algebraic of integral equations. Comput. Phys. Commun. 27, 213–227. https://doi.org/10.1016/0010-4655Test(82)90173-4; Riberio ROR, Marsico ET, Carnerio CS, Monteiro MLG, Junior CC, de Jesus EFO. 2014. Detection of honey adulteration of high fructose corn syrup by low field nuclear magnetic resonance (LF 1H NMR). J. Food Eng. 135, 39–43. https://doi.org/10.1016/j.jfoodeng.2014.03.009Test; Roca M, Gallardo-Guerrero L, Mínguez-Mosquera MI, Rojas BG. 2010. Control of olive oil adulteration with copper-chlorophyll derivatives. J. Agric. Food Chem. 58, 51–56. https://doi.org/10.1021/jf902084dTest PMid:20000773; Rohman A, Che Man YB. 2010. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 43, 886–892. https://doi.org/10.1016/j.foodres.2009.12.006Test; Smejkalova D, Piccolo A. 2010. High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chem. 118, 153–158. https://doi.org/10.1016/j.foodchem.2009.04.088Test; Torrecilla JS, Rojo E, Domínguez JC, Rodríguez F. 2010(a). Linear and nonlinear chemometric models to quantify the adulteration the adulteration of extra virgin olive oil. Talanta 83, 404–409. https://doi.org/10.1016/j.talanta.2010.09.048Test PMid:21111153; Torrecilla JS, Rojo E, Domínguez JC, Rodríguez F. 2010(b). A novel method to quantify the adulteration of extra virgin olive oil with low-grade olive oils by UV-Vis. J. Agric. Food Chem. 58, 1679–1684. https://doi.org/10.1021/jf903308uTest PMid:20070088; Xu Z, Morris RH, Bencsik M, Newton MI. 2014. Detection of virgin olive oil adulteration using low field unilateral NMR. Sensors 14, 2028–2035. https://doi.org/10.3390/s140202028Test PMid:24469355 PMCid:PMC3958213; Yang H, Irudayaraj J. 2001. Comparison of near-infrared, Fourier transform-infrared, and Fourier transform-Raman methods for determining olive pomace oil adulteration in extra virgin olive oil. J. Am. Oil Chem. Soc. 78, 889–895. https://doi.org/10.1007/s11746-001-0360-6Test; Zabaras D. 2010. Olive oil adulteration with hazelnut oil and analytical approaches for its detection. In: Preedy VR, Watson RR (ed) Olives and olive oil in health and disease prevention. Academic Press, London, pp. 441–450. ISBN: 978-0-12-374420-3. https://doi.org/10.1016/B978-0-12-374420-3.00049-8Test; Zamora R, Alba V, Hidalgo FJ. 2001. Use of high-resolution 13C nuclear magnetic resonance spectroscopy for the screening of virgin olive oils. J. Am. Oil Chem. Soc. 78, 89–94. https://doi.org/10.1007/s11746-001-0225-zTest; Zhang A, Wan L, Wu C, Fang Y, Han G, Li H, Zhang Z, Wang H. 2013. Simultaneous determination of 14 phenolic compounds in grape canes by HPLC-DAD- UV using wavelength switching detection. Molecules 18, 14241–14257. https://doi.org/10.3390/molecules181114241Test PMid:24252994; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1639Test
DOI: 10.3989/gya.0678161
الإتاحة: https://doi.org/10.3989/gya.0678161Test
https://doi.org/10.3989/gya.2017.v68.i1Test
https://doi.org/10.1016/j.talanta.2009.11.024Test
https://doi.org/10.1021/jf800369nTest
https://doi.org/10.1007/s00217-007-0651-7Test
https://doi.org/10.1016/j.foodchem.2005.10.035Test
https://doi.org/10.1007/s11746-003-0677-1Test
https://doi.org/10.1007/s12161-012-9379-5Test
https://doi.org/10.1080/10408391003768199Test
https://doi.org/10.1016/j.foodchem.2009.02.068Test
حقوق: Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC) ; https://creativecommons.org/licenses/by/4.0Test
رقم الانضمام: edsbas.9EDB9EC5
قاعدة البيانات: BASE