يعرض 31 - 40 نتائج من 142 نتيجة بحث عن '"wave propagation"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 31
    دورية أكاديمية

    المساهمون: Prikryl, P., Communications Research Centre, Ottawa, ON, Canada, Zhang, Y., Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States, Ebihara, Y., Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan, Ghoddousi-Fard, R., Natural Resources Canada, Geodetic Survey Division, Ottawa, ON, Canada, Jayachandran, P. T., University of New Brunswick, Physics Department, Fredericton, NB, Canada, Kinrade, J., University of Bath, Electronic and Electrical Engineering, Bath, United Kingdom, Mitchell, C. N., Weatherwax, A. T., Siena College, Physics and Astronomy, Loudonville, NY, United States, Bust, G., Cilliers, P. J., South African National Space Agency, Space Science Directorate, Hermanus, South Africa, Spogli, L., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Alfonsi, Lu., Romano, V., Ning, B., Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, Li, G., Jarvis, M. J., British Antarctic Survey, Physical Sciences Division, Cambridge, United Kingdom, Danskin, D. W., Natural Resources Canada, Geomagnetic Laboratory, Ottawa, ON, Canada, Spanswick, E., University of Calgary, Department of Physics and Astronomy, AB, Canada, Donovan, E., Terkildsen, M., IPS Radio and Space Services, Bureau of Meteorology, Haymarket, NSW, Australia

    العلاقة: Annals of Geophysics; 2 / 56 (2013); Alfonsi, L., L. Spogli, G. De Franceschi, V. Romano, M. Aquino, A. Dodson and C.N. Mitchell (2011). Bipolar climatology of GPS ionospheric scintillation at solar minimum, Radio Sci., 46, RS0D05; doi:10.1029/ 2010RS004571. Basu, S., E.J. Weber, T.W. Bullett, M.J. Keskinen, E. MacKenzie, P. Doherty, R. Sheehan, H. Kuenzler, P. Ning and J. Bongiolatti (1998). Characteristics of plasma structuring in the cusp/cleft region at Svalbard, Radio Sci., 33, 1885-1899; doi:10.1029/98RS01597. Belcher, J.W., and L. Davis Jr. (1971). Large-amplitude Alfvén waves in the interplanetary 458 medium, 2, J. Geophys. Res., 76, 3534-3563. Carlson, H.C. (2012). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques, Radio Sci., 47, RS0L21; doi:10.1029/2011RS004946. Donovan, E., T. Trondsen, L. Cogger and B. Jackel (2003). Auroral imaging within the Canadian CANOPUS and NORSTAR projects, Sodankylä Geophysical Observatory Publications, 92, 109-112. Ebihara, Y., R. Kataoka, A.T. Weatherwax and M. Yamauchi (2010). Dayside proton aurora associated with magnetic impulse events: South Pole observations, J. Geophys. Res., 115, A04301; doi:10.1029/2009JA0 14760. Feldstein, Y.I., and G.V. Starkov (1967). Dynamics of auroral belt and polar geomagnetic disturbances, Planet. Space Sci., 15, 209-230. Ghoddousi-Fard, R., and F. Lahaye (2012). Monitoring GPS phase rate variations as a proxy scintillation index, Abstract G012-1465908, GNSS and the Atmosphere, AGU Fall Meeting, San Francisco, 3-7 December 2012. Holzworth, R.H., and C.-I. Meng (1975). Mathematical representation of the auroral oval, Geophys. Res. Lett., 2, 377-380. Huttunen, K.E.J., R. Schwenn, V. Bothmer and H.E.J. Koskinen (2005). Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23, Annales Geophysicae, 23, 625-641; doi:10.5194/angeo-23-625-2005. Jayachandran, P.T., et al. (2009). Canadian High Arctic Ionospheric Network (CHAIN), Radio Sci., 44, RS0A03; doi:10.1029/2008RS004046. Kinrade, J., C.N. Mitchell, P. Yin, N. Smith, M.J. Jarvis, D.J. Maxfield, M.C. Rose, G.S. Bust and A.T. Weatherwax (2012). Ionospheric scintillation over Antarctica during the storm of 5-6 April 2010, J. Geophys. Res., 117, A05304; doi:10.1029/2011JA017073. Laundal, K.M., and N. Østgaard (2009). Asymmetric auroral intensities in the Earth's northern and southern hemispheres, Nature 460, 491-493; doi:10.1038/ nature08154. Li, G., B. Ning, Z. Ren and L. Hu (2010). Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum, GPS Solutions, 14 (4), 331-341; doi:10.1007/s10291-009-0156-x. Liu, W.W. (2005). Canadian space environment program and international living with a star, Adv. Space Res., 35, 51-60. Mann, I.R., D.K. Milling, I.J. Rae, L.G. Ozeke, A. Kale, Z.C. Kale, K.R. Murphy, A. Parent, M. Usanova, D.M. Pahud, V. Lee, E.-A. Amalraj, D.D. Wallis, V. Angelopoulos, K.-H. Glassmeier, C.T. Russell, H.- U., Auster and H.J. Singer (2008). The Upgraded CARISMA Magnetometer Array in the THEMIS Era, Space Sci. Rev., 141, 413-451; doi:10.1007/s1121 4-008-9457-6. Motoba, T., K. Hosokawa, Y. Ogawa, N. Sato, A. Kadokura, S.C. Buchert and H. Rème (2011). In-situ evidence for interplanetary magnetic field induced tail twisting associated with relative displacement of conjugate auroral features, J. Geophys. Res., 116, A04209; doi:10.1029/2010JA016206. Newell, P.T., T. Sotirelis and S. Wing (2009). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget, J. Geophys. Res. 114, A09207; doi:10.1029/2009JA014326. Nosé, M., et al. (2012). Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude, Space Weather, 10, S08002; doi:10.1029/2012SW000785. Osherovich, V.A., J. Fainberg and R.G. Stone (1999). Solar-wind quasi-invariant as a new index of solar activity, Geophys. Res. Lett., 26, 2597-2600. Østgaard, N., S.B. Mende, H.U. Frey, T.J. Immel, L.A. Frank, J.B. Sigwarth and T.J. Stubbs (2004). Interplanetary magnetic field control of the location of substorm onset and auroral features in the conjugate hemispheres, J. Geophys. Res., 109, A07204; doi:10.1029/2003JA010370. Paxton, L.J., D. Morrison, Y. Zhang, H. Kil, B. Wolven, B.S. Ogorzalek, D.C. Humm and C.-I. Meng (2002). Validation of remote sensing products produced by the Special Sensor Ultraviolet Scanning Imager (SSUSI) – a far-UV imaging spectrograph on DMSP F16, Proc. SPIE, 4485, 338. Prikryl, P., J.W. MacDougall, I.F. Grant, D.P. Steele, G.J. Sofko and R.A. Greenwald (1999). Observations of polar patches generated by solar wind Alfven wave coupling to the dayside magnetosphere, Annales Geophysicae, 17, 463-489. Prikryl, P., P.T. Jayachandran, S.C. Mushini, D. Pokhotelov, J.W. MacDougall, E., Donovan, E. Spanswick and J.-P. St.-Maurice (2010). GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum, Annales Geophysicae, 28, 1307-1316. Prikryl, P., P.T. Jayachandran, S.C. Mushini and R. Chadwick (2011a). Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions, Annales Geophysicae, 29, 377-392; doi:10.5194/an geo-29-377-2011. Prikryl, P., et al. (2011b). Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5-7 April 2010, Annales Geophysicae, 29, 2287-2304; doi:10.5194/angeo-29-2287-2011. Prikryl, P., R. Ghoddousi-Fard, B.S.R. Kunduri, E.G. Thomas, A.J. Coster, P.T. Jayachandran, E. Spanswick and D.W. Danskin (2013). GPS phase scintillation and proxy indices observed at high latitudes during a moderate geomagnetic storm, Annales Geophysicae, 31, 805-816; doi:10.5194/angeo-31-805-2013. Rodger, A.S., and A.C. Graham (1996). Diurnal and seasonal occurrence of polar patches, Annales Geophysicae, 14, 533-537. Sato, N., T. Nagaoka, K. Hashimoto and T. Saemundsson (1998). Conjugacy of isolated auroral arcs and nonconjugate auroral breakups, J. Geophys. Res., 103, 11641-11652; doi:10.1029/98JA00461. Sato, N., A. Kadokura, Y. Ebihara, H. Deguchi and T. Saemundsson (2005). Tracing geomagnetic conjugate points using exceptionally similar synchronous auroras, Geophys. Res. Lett., 32, L17109; doi:10.1029/ 2005GL023710. Smith, A.M., C.N. Mitchell, R.J. Watson, R.W. Meggs, P.M. Kintner, K. Kauristie and F. Honary (2008). GPS scintillation in the high arctic associated with an auroral arc, Space Weather, 6, S03D01; doi:10.1029/20 07SW000349. Spanswick, E., E. Donovan, R. Friedel and A. Korth (2007). Ground-based identification of dispersionless electron injections, Geophys. Res. Lett., 34, L03101; doi:10.1029/2006GL028329. Spogli L., Lu. Alfonsi, G. De Franceschi, V. Romano, M.H.O. Aquino and A. Dodson (2009). Climatology of GPS ionospheric scintillations over high and midlatitude European regions, Annales Geophysicae, 27, 3429-3437. Watson, C., P.T. Jayachandran, E. Spanswick, E.F. Donovan, and D.W. Danskin (2011). GPS TEC technique for observation of the evolution of substorm particle precipitation, J. Geophys. Res., 116, A00I90; doi:10.1029/2010JA015732. Zhang, Y. and L.J. Paxton (2008). An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmosph. Solar-Terrest. Phys., 70, 1231-1242.; http://hdl.handle.net/2122/8731Test

  2. 32
    دورية أكاديمية
  3. 33
    دورية أكاديمية
  4. 34
    دورية أكاديمية

    المساهمون: Azzarone, A., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Bianchi, C., Pezzopane, M., Pietrella, M., Scotto, C., Settimi, A.

    العلاقة: Computers & geosciences; /42 (2012); Angling, M. J., Khattatov, B., 2006. Comparative study of two assimilative models of the ionosphere, Radio Science, 41, RS5S20, doi:10.1029/2005RS003372. Bianchi, C., Bianchi, S., 2009. Problema generale del ray-tracing nella propagazione ionosferica – formulazione della ray theory e metodo del ray-tracing. INGV Technical Report N. 104, INGV Printing Office, Rome, Italy, 26 pp. [in Italian]. Bianchi, C., Settimi, A., Azzarone, A., 2010. IONORT - Ionosphere Ray-Tracing (Programma di ray-tracing nel magnetoplasma ionosferico). INGV Technical Report N. 161, INGV Printing Office, Rome, Italy, 20 pp. [in Italian]. Bianchi, C., Settimi, A., Scotto, C., Azzarone, A., Lozito, A., 2011. A method to test HF ray tracing algorithm in the ionosphere by means of the virtual time delay. Advances in Space Research, 48(10), 1600–1605. Bilitza, D., Reinisch, B.W., 2008. International Reference Ionosphere 2007: Improvements and new parameters. Advances in Space Research, 42(4), 599–609, doi:10.1016/j.asr.2007.07.048. Budden, K.G., 1988. The propagation of the radio wave. Cambridge University Press, Cambridge, UK, 688 pp. Chapman, S., 1931. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth, Proceedings of the Physical Society of London, 43 (1), 26-45. Coleman, C. J., 1998. A ray-tracing formulation and its application to some problems in over-the-horizon radar. Radio Science, 33 (4), 1187-1197. Croft, T. A., Gregory, L., 1963. A fast, versatile ray-tracing program for IBM 7090 digital computers. Rept. SEL-63-107, TR 82, contract No. 225 (64), Stanford University, Stanford Electronics Laboratories, Office of Naval Research, Advanced Research Projects Agency, Standford, California, USA, 23 pp. Davies, K., 1990. Ionospheric Radio. Peter Peregrinus Ltd., London, UK, 508 pp. Duziak, W. F., 1961. Three-Dimensional ray trace computer program for electromagnetic wave propagation studies. Technical Report, DASA 1232, RM 61 TMP-32, Santa Barbara, California, USA, 179 pp. Galkin, I. A., Reinisch, B.W., 2008. The new ARTIST 5 for all Digisondes. Ionosonde Network Advisory Group Bulletin 69, pp. 1–8, IPS Radio and Space Serv., Surry Hills, N. S. W., Australia. [Available at http://www.ips.gov.au/IPSHosted/INAG/webTest‐69/2008/artist5‐inag.pdf.] Haselgrove, J., 1955. Ray theory and new method for ray-tracing. Report of the Physical Society Conference, pp. 355-364, The Physical Society, London, UK. Jones, R. M., Stephenson, J. J., 1975. A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT Report, 75-76, U. S. Department of Commerce, Office of Telecommunication, U. S. Government Printing Office, Washington, USA, 185 pp. Nickish, L.J., 2008. Practical application of Haselgrove’s equation for HF systems. Radio Scientific Bulletin URSI N.325, 36-48. Pezzopane, M., Pietrella, M., Pignatelli, A., Zolesi, B., Cander, L.R., 2011. Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling, Radio Science, 46, RS5009, doi:10.1029/2011RS004697. Pezzopane, M., Scotto, C., 2007. Automatic scaling of critical frequency foF2 and MUF(3000)F2: A comparison between Autoscala and ARTIST 4.5 on Rome data. Radio Science, 42, RS4003, doi:10.1029/2006RS003581. Pezzopane, M., Scotto, C., 2008. A method for automatic scaling of F1 critical frequencies from ionograms. Radio Science, 43 , RS2S91, doi:10.1029/2007RS003723. Pezzopane, M. Scotto, C., 2010. Highlighting the F2 trace on an ionogram to improve Autoscala performance. Computer & Geosciences, 36, 1168-1177, doi:10.1016/j.cageo.2010.01.010. Press, W.H., Teukolsky, W.T., Vetterling, B.P., Flannery, S.A., 1996. Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing. Volume 2 of Fortran Numerical Recipes, Second Edition, Cambridge University Press, UK. Reinisch, B.W., Huang, X., 1983. Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottom side ionograms. Radio Science, 18(3), doi:10.1029/RS018i003p00477. Scotto, C., 2009. Electron density profile calculation technique for Autoscala ionogram analysis. Advances in Space Research, doi:10.1016/j.asr.2009.04.037. Weinberg, S., 1962. Eikonal Method in Magnetohydrodynamics. The Physical Review, 126(6), 1899-1909.; http://hdl.handle.net/2122/7916Test; http://arxiv.org/abs/1202.2079Test; http://www.sciencedirect.com/science/article/pii/S009830041200043XTest

  5. 35
    دورية أكاديمية

    المساهمون: Pischiutta, M., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia, Salvini, F., Roma Tre University, Fletcher, J. B., USGS Menlo Park (CA), Rovelli, A., Ben-Zion, Y., University of Southern California, Los Angeles (CA)

    العلاقة: Geophysical Journal International; 3/188(2012); Argus, D.F. & Gordon, R.G., 2001. Present tectonic motion across the Coast ranges and San Andreas fault system in central California, Bull. seism. Soc. Am., 113, 1580–1592. Bakun, W.H., 1999. Seismic activity of the San Francisco Bay region, Bull. seism. Soc. Am., 89, 764–784. Barchi, M., Amato, A., Cippitelli, G., Merlini, S. & Montone, P., 2007. Extensional tectonics and seismicity in the axial zone of the Southern Apennines, Boll. Soc. Geol. It., Special Issue 7, 47–56. Ben-Zion, Y., 1998. Properties of seismic fault zone waves and their utility for imaging low-velocity structures, J. geophys. Res., 103(B6), 12 567–12 585. Ben-Zion, Y. & Aki, K., 1990. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone, Bull. seism. Soc. Am., 80, 971–994. Ben-Zion, Y. & Sammis, C.G., 2003. Characterization of fault zones, Pure appl. Geophys., 160, 677–715. Ben Zion, Y. & Shi, Z., 2005. Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth planet. Sci. Lett., 236, 486–496. Ben-Zion, Y. et al., 2003. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int., 152, 699–717. Bonamassa, O. & Vidale, J.E., 1991. Directional site resonances observed from aftershocks of the 18 October Loma Prieta earthquake, Bull. seism. Soc. Am., 81(5), 1945–1957. Boness, N.L. & Zoback, M.D., 2006. Mapping stress and structurally controlled shear velocity anisotropy in California, Geology, 34(10), 825–828. Burjanek, J., Gassner-Stamm, G., Poggi, V., Moore, J.R. & Fah, D., 2010.Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int., 180, 820–828, doi:10.1111/j.1365-246X.2009.04451.x. Caine, J.S., Evans, J.P. & Forster, C.B., 1996. Fault zone architecture and permeability structure, Geology, 24, 1025–1028 Calderoni, G., Rovelli, A. & Di Giovambattista, R., 2010. Large amplitude variations recorded by an on-fault seismological station during the L’Aquila earthquakes: evidence for a complex fault-induced site effect, Geophys. Res. Lett., 37, L24305, doi:10.1029/2010GL045697. Cello, G., Gambini, R., Mazzoli, S., Read, A., Tondi, E. & Zucconi, V., 2000. Fault zone characteristics and scaling properties of the Val d’Agri fault system, Southern Apennines, Italy, J. Geodyn., 29(3–5), 293–307. Cello, G., Tondi, E., Van Dijk, J.P., Mattioni, L., Micarelli, L. & Pinti, S., 2003. Geometry, kinematics and scaling properties of faults and fractures as tools for modelling geofluid reservoirs: examples from the Apennines, Italy, Geol. Soc. London Spec. Publ., 212, 7–22, doi:10.1144/GSL.SP.2003.212.01.02. Cultrera, G., Rovelli, A., Mele, G., Azzara, R., Caserta, A. & Marra, F., 2003. Azimuth dependent amplification of weak and strong ground motions within a fault zone, Nocera Umbra, Central Italy, J. geophys. Res., 108(B3), 2156–2170, doi:10.1029/2002JB001929. Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G. & Rigano, R., 2009. Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy, J. geophys. Res., 114, doi:10.1029/2009JB006393. Dor, O., Rockwell, T.K. & Ben-Zion, Y., 2006. Geologic observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in southern California: a possible indicator for preferred rupture propagation direction, Pure appl. Geophys., 163, 301–349, doi:10.1007/s00024-005-0023-9. Dor, O., Yildirim, C., Rockwell, T.K., Ben-Zion, Y., Emre, O., Sisk, M. & Duman, T.Y., 2008. Geologic and geomorphologic asymmetry across the rupture zones of the 1943 and 1944 earthquakes on the North Anatolian Fault: possible signals for preferred earthquake propagation direction, Geophys. J. Int., 173, 483–504, doi:10.1111/j.1365-246X.2008.03709.x. Falsaperla, S., Cara, F., Rovelli, A., Neri, M., Behncke, B. & Acocella, B., 2010. Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: the missing link? J. geophys. Res., 115(B11306), doi:10.1029/2010JB007529. Fletcher, J.B., Fumal, T., Liu, H.-P. & Carroll, L.C., 1990. Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data, Bull. seism. Soc. Am., 80, 807–731. Graymer, R. W., Sarna-Wojcicki, A.M., Walker, J.P., McLaughlin, R.J. & Fleck, R.J., 2002. Controls on timing and amount of right-lateral offset on the East Bay fault system, San Francisco Bay region, California, Bull. geol. Soc. Am., 114, 1471– 1479. Graymer, R.W., Ponce, D.A., Jachens, R.C., Simpson, R.W., Phelps, G.A. & Wentworth, C.M., 2005. Three-dimensional geologic map of the Hayward fault, northern California: correlation of rock units with variations in seismicity, creep rate and fault dip, Geology, 33, 521–524. Griffith, A., Sanz, P.F. & Pollard, D., 2009. Influence of outcrop scale fractures on the effective stiffness of fault damage zone rocks, Pure appl. Geophys., 166, 1595–1627. Harding, T.P., 1974. Petroleum traps associated with wrench faults, Bull. Am. Ass. Petrol. Geol., 60, 365–378. Harding, T.P. & Lowell, J.D., 1979. Structural styles, their plate tectonic habitats & hydrocarbon traps in petroleum provinces, Am. Assoc. Petrol. Geol. Bull., 63, 1016–1058. Hobbs, B.E., Means, W.D. & Williams, P.P., 1976. An Outline of Structural Geology, Wiley, New York, NY, 571 pp. Improta, L. & Bruno, P.P., 2007. Combining seismic reflection with multifold wide-aperture profiling: an effective strategy for high-resolution shallow imaging of active faults, Geophys. Res. Lett., 34, L20310, doi:10.1029/2007GL031893. Jaeger, J.C., Cook, N.G.W. & Zimmerman, R.W., 2007. Fundamentals of Rock Mechanics, Blackwell, Malden, MA, 475 pp. Jurkevics, A., 1988. Polarization analysis of three component array data, Bull. seism. Soc. Am., 78, 1725–1743.Kanasewich, E.R., 1981. Time Sequence Analysis in Geophysics, University of Alberta Press, Edmonton, 477 pp. Kelson, K.I. & Simpson, G.D., 1995. Late Quaternary deformation of the Southern East Bay Hills, Alameda County, California, Am. Assoc. Petrol. Geol. Bull., Abstracts with Programs, Pacific Section Convention, p. 37. La Rocca, M., Galluzzo, D., Saccorotti, G., Tinti, S., Cimini, G.B. & Del Pezzo, E., 2004. Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy, Bull. seism. Soc. Am., 94(5), 1850–1867, doi:10.1785/012003238. Lawson, A.C., 1908. The earthquake of 1868, in The California Earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission, Volume I, pp. 434–448, ed. Lawson, A.C., Carnegie Institution of Washington Publication No. 87. Li, Y.G. & Leary, P.C., 1990. Fault zone trapped seismic waves, Bull. seism. Soc. Am., 80, 1245–1271. Li, Y.G., Leary, P.C., Aki, K. & Malin, P., 1990. Seismic trapped modes in the Oroville and San Andreas fault zones, Science, 249, 763–765, doi:10.1126/science.249.4970.763. Li, Y.L., Ellsworth, G.W., Thurber, C.H., Malin, P.E. & Aki, K., 1997. Observations of fault zone trapped waves excited by explosions at the San Andreas fault, central California, Bull. seism. Soc. Am., 87, 210–221. Lienkaemper, J.J., Galehouse, J.S. & Simpson, R.W., 2001. Long-term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake, Geophys. Res. Lett., 28, 2265–2268. Liu, Y., Teng, T.L. & Ben-Zion, Y., 2005. Near-surface seismic anisotropy, attenuation and dispersion in the aftershock region of the 1999 Chi-Chi earthquake, Geophys. J. Int., 160(2), 695–706. Liu, Y., Zhang, H. & Thurber, C., 2008. Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: spatial and temporal analysis, Geophys. J. Int., 172, 957–970, doi:10.1111/j.1365-246X.2007.03618.x. Lewis, M. & Ben-Zion, Y., 2010. Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms, Geophys. J. Int., 183, 1579–1595, doi:10.1111/j.1365-246X.2010.04816.x. Lewis, M.A., Peng, Z., Ben-Zion, Y. & Vernon, F.L., 2005. Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California, Geophys. J. Int., 162, 867–881, doi:10.1111/j.1365-246X.2005. 02684.x. Lienkaemper, J.J., 1992. Map of recently active traces of the Hayward fault, Alameda and Contra Costa Counties, California, scale 1:24,000. U.S. Geol. Surv. Misc. Field Stud. Map MF-2196, 13 pp. Lienkaemper, J.J., Borchardt,G.&Lisowski,M., 1991. Historic creep rate& potential for seismic slip along the Hayward fault, California, J. geophys. Res., 96, 18 261–18 283. Mamada, Y., Kuwahara, Y., Ito, H. & Takenaka, H., 2004. Discontinuity of the Mozumi–Sukenobu fault low-velocity zone, central Japan, inferred from 3-D finite-difference simulation of fault zone waves excited by explosive sources, Tectonophysics, 378(3–4), 209–222. Mandl, G., 2000. Faulting in Brittle Rocks, Springer, London, 434 pp. Maschio, L., Ferranti, L. & Burrato, P., 2005. Active extension in Val d’Agri area, Southern Apennines, Italy: implications for the geometry of the seismogenic belt, Geophys. J. Int., 162(2), 591–609. Menardi Noguera, A. & Rea, G., 2000. Deep structure of the Campanian- Lucanian Arc (Southern Apennine, Italy), Tectonophysics, 324(4), 239–265. Mizuno, T. & Nishigami, K, 2004. Deep structure of theMozumi-Sukenobu fault, central Japan, estimated from the subsurface array observation of fault zone trapped waves, Geophys. J. Int., 159(2), 622–642. Pastori, M., Piccinini, D., Margheriti, L., Improta, L., Valoroso, L., Chiaraluce, L. & Chiarabba, C., 2009. Stress aligned cracks in the upper crust of the Val d’Agri region as revealed by shear wave splitting, J. geophys. Res., 179, 601–614. Peng, Z. & Ben-Zion, Y., 2004. Systematic analysis of crustal anisotropy along the Karadere-D¨uzce branch of the north Anatolian fault, Geophys. J. Int., 159, 253–274, doi:10.1111/j.1365-246X.2004.02379.x. Peng, Z. & Ben-Zion, Y., 2006. Temporal changes of shallow seismicvelocity around the Karadere-Duzce branch of the North Anatolian Fault & strong ground motion, Pure appl. Geophys., 163, 567–600. Peng, Z., Ben-Zion, Y.,Michael, A.J. & Zhu, L., 2003. Quantitative analysis of fault zone waves in the rupture zone of the Landers, 1992, California earthquake: evidence for a shallow trapping structure, Geophys. J. Int., 155, 1021–1041. Pischiutta, M., 2010. The polarization of horizontal ground motion: an analysis of possible causes, Ph.D. thesis, Universit`a di Bologna ‘Alma Mater Studiorum’, 172 pp. Pischiutta, M., Rovelli, A., Fletcher, J.B., Salvini, F. & Ben-Zion, Y., 2010. Study of ground motion polarization in fault zones: a relation with brittle deformation fields? American Geophysical Union, Fall Meeting 2010, abstract #S13A-1960. Pischiutta, M., Rovelli, A., Vannoli, P. & Calderoni, G., 2011. Recurrence of horizontal amplification at rock sites: a test using H/V based ground motion prediction equations, in Effects of Surface Geology on SeismicMotion, Proceedings of 4th IASPEI/IAEE International Symposium, 2011 August 23–26, University of California Santa Barbara. Pitarka, A., Collins, N., Thio, H.K., Graves, R. & Somerville, P., 2006. Implication of rupture process and site effects in the spatial distribution and amplitude of the near-fault ground motion from the 2004 Parkfield earthquake, In Proceedings, SMIP06 Seminar on Utilization of Strong motion Data, California Strong Motion Instrumentation Program, Sacramento, CA, pp. 19–40. Provost, A.-S. & Houston, H., 2003. Stress orientations in northern and central California: evidence for the evolution of frictional strength along the San Andreas plate boundary system, J. geophys. Res., 108(B3), 2175, doi:10.1029/2001JB001123. Riedel,W., 1929. Zur mechanik geologischer Brucherscheinungen. Zentralblatt, Mineral Geol Palaont B, 354–368. Rigano, R., Cara, F., Lombardo, G. & Rovelli, A., 2008. Evidence of ground motion polarization on fault zones of Mount Etna volcano, J. geophys. Res., 113, doi:10.1029/2007JB005574. Rovelli, A., Caserta, A., Marra, F. & Ruggiero, V., 2002. Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy, Bull. seism. Soc. Am., 92, 2217–2232. Salvini, F., Billi, A. &Wise, D.U., 1999. Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy, J. Struct. Geol., 21, 1731–1749. Savage, J.C. & Lisowski, M., 1993. Inferred depth of creep on the Hayward fault, central California, J. geophys. Res., 98, 787–793. Savage,M.K., Peppin,W.A.&Vetter,U.R., 1990. Shear-wave anisotropy and stress direction in & near Long Valley Caldera, California, 1979–1988, J. geophys. Res., 95, 11 165–11 177. Seeber, L., Armbruster, J.G., Ozer, N., Aktar,M., Baris, S., Okaya, D., Ben- Zion, Y. & Field, E. 2000. The 1999 earthquake sequence along the North Anatolia Transform at the juncture between the two main ruptures, in The 1999 Izmit & Duzce Earthquakes: Preliminary Results, pp. 209–223, eds Barka, A., Kazaci, O., Akyuz, S. & Altunel, E., Istanbul Technical University. Spudich, P. & Olsen, K.B., 2001. Fault zone amplified waves as a possible seismic hazard along the Calaveras Fault in central California, Geophys. Res. Lett., 28(13), 2533–2536, doi:10.1029/2000GL011902. Spudich, P. & Xu, L., 2003. Documentation of software package ISOSYN: isochrone integration programs for earthquake ground motion calculations, CD accompanying IASPEI Handbook of Earthquake & Engineering Seismology, 72pp. Spudich, P., Hellweg, M. & Lee, M.H., 1996. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge California earthquake: implications formainshocks motions, Bull. seism. Soc. Am., 86, 193–208. Storti, F., Salvini, F. & McClay, K., 1997. Fault related folding in sandbox analogue models of thrust wedges, J. Struct. Geol., 19, 583–602. Yu, E.&Segall, P., 1996. Slip in the 1868 Hayward earthquake from the analysis of historical triangulation data, J. geophys. Res., 101, 16 101–16 118. Wakabayashi, J., 1999. Distribution of displacement on and evolution of a young transform fault system: the northern San Andreas fault system, California, Tectonics, 18, 1245–1274.Wakabayashi, J., Hengesh, J.V. & Sawyer, T.L., 2004. Four-dimensional transform fault processes: progressive evolution of step-overs and bends, Tectonophysics, 392, 279– 301. Williams, P.L., 1992. Geologic record of southern Hayward Fault earthquakes, in Proceedings of the Second Conference on Earthquake Hazards in the Eastern San Francisco Bay Area, eds Borchardt, G. et al., Spec. Publ. Calif. Div. Mines Geol. 113, pp. 171–179. Williams, R.A., Simpson, R.W., Jachens, R.C., Stephenson,W.J.,Odum, J.K. & Ponce, D.A., 2005. Seismic reflection evidence for a northeast-dipping Hayward fault near Fremont, California: implications for seismic hazard, J. geophys. Res., 114, doi:10.1029/2005GL023113.; http://hdl.handle.net/2122/7511Test

  6. 36
    دورية أكاديمية
  7. 37
    دورية أكاديمية
  8. 38
    دورية أكاديمية

    المؤلفون: Gentili, S., Franceschina, G.

    المساهمون: Gentili, S., Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Centro Ricerche Sismologiche, Udine, Italia, Franceschina, G., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia

    العلاقة: Geophysical Journal International; http://hdl.handle.net/2122/6964Test

  9. 39
    دورية أكاديمية

    المؤلفون: Xenos, T. D.

    المساهمون: Xenos, T. D., Department of Electrical Engineering, University of Thessaloniki, Greece

    وصف الملف: 1765143 bytes; application/pdf

    العلاقة: 1/42 (1999); http://hdl.handle.net/2122/1362Test

  10. 40
    دورية أكاديمية

    المساهمون: Saccorotti, G., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia, Piccinini, D., Cauchie, L., Fiori, I., European Gravitational Observatory, Cascina, Pisa, Italy

    العلاقة: Bullettin of the Seismological Society of America; http://hdl.handle.net/2122/6754Test