يعرض 1 - 10 نتائج من 59 نتيجة بحث عن '"Silvestri A."', وقت الاستعلام: 0.97s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia

    العلاقة: Frontiers in Earth Science; /10(2022); Acocella, V., and Tibaldi, A. (2005). Dike propagation driven by volcano collapse: A general model tested at Stromboli, Italy. Geophys. Res. Lett. 32, L08308. doi:10. 1029/2004GL022248 Aiuppa, A., Bitetto, M., Delle Donne, D., La Monica, F. P., Tanmburello, G., Coppola, D., et al. (2021). Volcanic CO2 tracks the incubation period of basaltic paroxysms. Sci. Adv. 7, eabh0191. doi:10.1126/sciadv.abh0191 Allard, P., Carbonnelle, J., Metrich, N., Loyer, H., and Zettwoog, P. (1994). Sulphur output and magma degassing budget of Stromboli volcano. Nature 368, 326–330. doi:10.1038/368326a0 Andronico, D., Del Bello, E., D’Oriano, C., Landi, P., Pardini, F., Scarlato, P., et al. (2021). Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nat. Commun. 12, 4213. doi:10.1038/s41467-021- 24420-1 Antonello, G., Casagli, N., Farina, P., Leva, D., Nico, G., Sieber, A. J., et al. (2004). Ground-based SAR interferometry for monitoring mass movements. Landslides 1 (1), 21–28. doi:10.1007/s10346-003-0009-6 Ardhuin, F., Gualtieri, L., and Stutzmann, E. (2015). How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s. Geophys. Res. Lett. 42, 765–772. doi:10.1002/2014GL062782 Bertagnini, A., Di Roberto, A., and Pompilio, M. (2011). Paroxysmal activity at Stromboli: Lessons from the past. Bull. Volcanol. 73, 1229–1243. doi:10.1007/ s00445-011-0470-3 Bertagnini, A., Coltelli, M., Landi, P., Pompilio, M., and Rosi, M. (1999). Violent explosions yield new insights into dynamics of Stromboli Volcano. Eos Trans. AGU. 80 (52), 633. doi:10.1029/99eo00415 Bertolaso, G., Bonaccorso, A., and Boschi, E. (2008). “Scientific community and civil protection synergy during the Stromboli 2002–2003 Eruption,” in The Stromboli volcano, an integrated study of the 2002– 2003 eruption. Editors S. Calvari, S. Inguaggiato, G. Puglisi, M. Ripepe, and M. Rosi (American Geophysical Union, Washington, D.C: AGU Geophysical Monograph), 182, 387–397. doi:10.1029/143GM31 Bonaccorso, A., Calvari, S., and Boschi, E. (2015). “Hazard mitigation and crisis management during major flank eruptions at Etna volcano: Reporting on real experience,” in Detecting, modelling and responding to effusive eruptions. Editors A. J. L. Harris, T.DeGroeve, F. Garel, and S. A. carn (Geological Society, London, Special Publications), 426, 447–461. ISBN 978-1-86239-736-1. doi:10. 1144/SP426.4 Bonaccorso, A., Calvari, S., Garfì, G., Lodato, L., and Patané, D. (2003). Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys. Res. Lett. 30 (18), 1941–1944. doi:10.1029/2003GL017702 Bromirski, P. D., Flick, R. E., and Graham, N. (1999). Ocean wave height determined from inland seismometer data: Implications for investigating wave climate changes in the NE Pacific. J. Geophys. Res. 104, 20753–20766. doi:10.1029/ 1999JC900156 Burton,M. R., Caltabiano, T., Mure , F., Salerno, G., and Randazzo, D. (2009). SO2 flux from Stromboli during the 2007 eruption: Results from the FLAME network and traverse measurements. J. Volcanol. Geotherm. Res. 182, 214–220. doi:10.1016/j. jvolgeores.2008.11.025 Casagli, N., Tibaldi, A., Merri, A., Del Ventisette, C., Apuani, T., Guerri, L., et al. (2009). Deformation of Stromboli Volcano (Italy) during the 2007 eruption revealed by radar interferometry, numerical modelling and structural geological field data. J. Volcanol. Geotherm. Res. 182 (3-4), 182–200. doi:10.1016/j.jvolgeores. 2009.01.002 Calvari, S., Büttner, R., Cristaldi, A., Dellino, P., Giudicepietro, F., Orazi, M., et al. (2012). The 7 September 2008 Vulcanian explosion at Stromboli volcano: Multiparametric characterization of the event and quantification of the ejecta. J. Geophys. Res. 117, B05201. doi:10.1029/2011JB009048 Calvari, S., Bonaccorso, A., Madonia, P., Neri, M., Liuzzo,M., Salerno, G. G., et al. (2014). Major eruptive style changes induced by structural modifications of a shallow conduit system: The 2007-2012 Stromboli case. Bull. Volcanol. 76, 841. doi:10.1007/s00445-014-0841-7 Calvari, S., Di Traglia, F., Ganci, G., Giudicepietro, F., Macedonio, G., Cappello, A., et al. (2020). Overflows and pyroclastic density currents in march-april 2020 at Stromboli volcano detected by remote sensing and seismic monitoring data. Remote Sens. 12 (18), 3010. doi:10.3390/rs12183010 Calvari, S., Giudicepietro, F., Di Traglia, F., Bonaccorso, A., Macedonio, G., Casagli, N., et al. (2021). Variable magnitude and intensity of strombolian explosions: Focus on the eruptive processes for a first classification scheme for Stromboli volcano (Italy). Remote Sens. (Basel). 13, 944. doi:10.3390/rs13050944 Calvari, S., Intrieri, E., Di Traglia, F., Bonaccorso, A., Casagli, N., Cristaldi, A., et al. (2016). Monitoring crater-wall collapse at active volcanoes: A study of the 12 january 2013 event at Stromboli. Bull. Volcanol. 78 (5), 39. doi:10.1007/s00445- 016-1033-4 Calvari, S., Lodato, L., Steffke, A., Cristaldi, A., Harris, A. J. L., Spampinato, L., et al. (2010). The 2007 Stromboli eruption: Event chronology and effusion rates using thermal infrared data. J. Geophys. Res. 115, B04201. doi:10.1029/ 2009JB006478 Calvari, S., Spampinato, L., Lodato, L., Harris, A. J. L., Patrick, M. R., Dehn, J., et al. (2005). Chronology and complex volcanic processes during the 2002- 2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a hand-held thermal camera. J. Geophys. Res. 110, B02201. doi:10.1029/2004JB003129 Calvari, S., Spampinato, L., and Lodato, L. (2006). The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. J. Volcanol. Geotherm. Res. 149, 160–175. doi:10.1016/j.jvolgeores. 2005.06.006 Campion, R., Delgado-Granados, H., and Mori, T. (2015). Image-based correction of the light dilution effect for SO2 camera measurements. J. Volcanol. Geotherm. Res. 300, 48–57. doi:10.1016/j.jvolgeores.2015.01.004 Cannata, A., Cannavò, F., Moschella, S., Di Grazia, G., Nardone, G., Orasi, A., et al. (2020). Unravelling the relationship between microseisms and spatial distribution of sea wave height by statistical and machine learning approaches. Remote Sens. 12 (5), 761. doi:10.3390/rs12050761 Chiocci, F. L., Romagnoli, C., Tommasi, P., and Bosman, A. (2008). The Stromboli 2002 tsunamigenic submarine slide: Characteristics and possible failure mechanisms. J. Geophys. Res. 113, B10102. doi:10.1029/ 2007JB005172 Civico, R., Ricci, T., Scarlato, P., Andronico, D.,Cantarero,M.,Carr, B. B., et al. (2021). Unoccupied aircraft systems (UASs) reveal the morphological changes at Stromboli volcano (Italy) before, between, and after the 3 july and 28 August 2019 paroxysmal eruptions. Remote Sens. (Basel). 13, 2870. doi:10.3390/ rs13152870 Coppola, D., Piscopo, D., Laiolo, M., Cigolini, C., Delle Donne, D., Ripepe, M., et al. (2012). Radiative heat power at Stromboli volcano during 2000–2011: Twelve years of MODIS observations. J. Volcanol. Geotherm. Res. 215 (216), 48–60. doi:10. 1016/j.jvolgeores.2011.12.001 Corradino, C., Amato, E., Torrisi, F., Calvari, S., and Del Negro, C. (2021a). Classifying major explosions and paroxysms at Stromboli volcano (Italy) from space. Remote Sens. 13, 4080. doi:10.3390/rs13204080 Corradino, C., Bilotta, G., Cappello, A., Fortuna, L., and Del Negro, C. (2021b). Combining radar and optical satellite imagery with machine learning to map lava flows at mount Etna and fogo island. Energies 14 (1), 197. doi:10.3390/ en14010197 Cutroneo, L., Ferretti, G., Barani, S., Scafidi, D., De Leo, F., Besio, G., et al. (2021). Near real-time monitoring of significant sea wave height through microseism recordings: Analysis of an exceptional sea storm event. J. Mar. Sci. Eng. 9 (3), 319. doi:10.3390/jmse9030319 De Fino, M., La Volpe, L., Falsaperla, S., Frazzetta, G., Neri, G., Francalanci, L., et al. (1988). The Stromboli eruption of december 6, 1985-april 25, 1986: Volcanological, petrological and seismological data. Rend Soc It Miner Petr 43, 1021–1038. Di Lieto, B., Romano, P., Scarpa, R., and Linde, A. T. (2020). Strain signals before and during paroxysmal activity at Stromboli volcano, Italy. Geophys. Res. Lett. 47. doi:10.1029/2020GL088521 Di Roberto, A., Bertagnini, A., Pompilio, M., and Bisson, M. (2014). Pyroclastic density currents at Stromboli volcano (aeolian islands, Italy): A case study of the 1930 eruption. Bull. Volcanol. 76, 827. doi:10.1007/s00445- 014-0827-5 Di Traglia, F., Battaglia, M., Nolesini, T., Lagomarsino, D., and Casagli, N. (2015). Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data. Sci. Rep. 5, 13569. doi:10.1038/srep13569 Di Traglia, F., Calvari, S., D’Auria, L., Nolesini, T., Bonaccorso, A., Fornaciai, A., et al. (2018). The 2014 effusive eruption at Stromboli: New insights from in situ and remote-sensing measurements. Remote Sens. 10 (12), 2035. doi:10.3390/ rs10122035 Di Traglia, F., Cauchie, L., Casagli, N., and Saccorotti, G. (2014b). Decrypting geophysical signals at Stromboli Volcano (Italy): Integration of seismic and Ground-Based InSAR displacement data. Geophys. Res. Lett. 41 (8), 2753–2761. doi:10.1002/2014gl059824 Di Traglia, F., De Luca, C., Manzo, M., Nolesini, T., Casagli, N., Lanari, R., et al. (2021). - Joint exploitation of space-borne and ground-based multitemporal InSAR measurements for volcano monitoring: The Stromboli volcano case study. Remote Sens. Environ. 260, 112441. doi:10.1016/j.rse.2021.112441 Di Traglia, F., Fornaciai, A., Favalli, M., Nolesini, T., and Casagli, N. (2020). - catching geomorphological response to volcanic activity on steep slope volcanoes usingmulti- platform remote sensing. Remote Sens. (Basel). 12 (3), 438. doi:10.3390/ rs12030438 Di Traglia, F., Nolesini, T., Intrieri, E., Mugnai, F., Leva, D., Rosi, M., et al. (2014a). Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: A tool to mitigate volcano flank dynamics and intense volcanic activity. Earth-Science Rev. 139, 317–335. doi:10. 1016/j.earscirev.2014.09.011 Finizola, A., Sortino, F., Lénat, J.-F., and Valenza, M. (2002). Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. J. Volcanol. Geotherm. Res. 116, 1–18. doi:10.1016/s0377- 0273(01)00327-4 Falsaperla, S., Maiolino, V., Spampinato, S., Jaquet, O., and Neri, M. (2008). Sliding episodes during the 2002 – 2003 Stromboli lava effusion: Insights from seismic, volcanic, and statistical data analysis. Geochem. Geophys. Geosyst. 9, Q04022. doi:10.1029/2007GC001859 Falsaperla, S., Neri, M., Pecora, E., and Spampinato, S. (2006). Multidisciplinary study of flank instability phenomena at Stromboli volcano, Italy. Geophys. Res. Lett. 33, L09304. doi:10.1029/2006GL025940 Fisher, J. B., Hook, S., Allen, R., Anderson, M. C., French, A. N., Hain, C., et al. (2015). “Ecostress: NASA’s next-generation mission to measure evapotranspiration from the international space station,” in AGU fall meeting abstracts (Washington, DC, USA: AGU). Francalanci, L., Tommasini, S., Conticelli, S., and Davies, G. R. (1999). Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Planet. Sci. Lett. 167 (1–2), 61–69. doi:10.1016/S0012-821X(99) 00013-8 Francalanci, L., Lucchi, F., Keller, J., De Astis, G., and Tranne, C. A. (2013). Eruptive, volcano-tectonic and magmatic history of the Stromboli volcano (northeastern Aeolian archipelago), 37. London, Memoirs: Geological Society, 397–471. doi:10.1144/M37.13 Ganci, G., Cappello, A., Zago, V., Bilotta, G., Hérault, A., Del Negro, C., et al. (2019). 3D Lava flow mapping of the 17–25 May 2016 Etna eruption using tri-stereo optical satellite data. Ann. Geophys. 62 (2). doi:10.4401/ag-7875 Gabriel, A. K., Goldstein, R. M., and Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. 94, 9183. doi:10.1029/JB094iB07p09183 Gambino, S., Falzone, G., Ferro, A., and Laudani, G. (2014). Volcanic processes detected by tiltmeters: A review of experience on Sicilian volcanoes. J. Volcanol. Geotherm. Res. 271, 43–54. doi:10.1016/j.jvolgeores.2013.11.007 Ganci, G., Bilotta, G., Calvari, S., Cappello, A., Del Negro, C., Herault, A., et al. (2021). “Volcanic hazard monitoring using multi-source satellite imagery,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11-16 July 2021, 1903–1906. doi:10.1109/IGARSS47720.2021. 9554557 Ganci, G., Bilotta, G., Cappello, A., Hérault, A., and Del Negro, C. (2016). Hotsat: A multiplatform system for the thermal monitoring of volcanic activity using satellite data. Geol. Soc. Lond. Spec. Publ. 426, 207–221. doi:10.1144/ SP426.21 Ganci, G., Cappello, A., Bilotta, G., Hérault, A., Zago, V., Del Negro, C., et al. (2018). Mapping volcanic deposits of the 2011–2015 Etna eruptive events using satellite remote sensing. Front. Earth Sci. 6, 83. doi:10.3389/feart.2018.00083 Ganci, G., Vicari, A., Fortuna, L., and Del Negro, C. (2011). The HOTSAT volcano monitoring system based on a combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 54, 5. doi:10.4401/ag-5338 Garcia-Aristizabal, A., Kumagai, H., Samaniego, P., Mothes, P., Yepes, H., Monzier, M., et al. (2007). Seismic, petrologic and geodetic analyses of the 1999 dome-forming eruption of Guagua Pichincha volcano, Ecuador. J. Volcanol. Geotherm. Res. 161 (4), 333–351. doi:10.1016/j.jvolgeores.2006. 12.007 Gillot, P. Y., and Keller, J. (1993). Radiochronological dating of Stromboli. Acta Vulc 3, 69–77. Giordano, G., and De Astis, G. (2021). The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bull. Volcanol. 83, 1. doi:10.1007/s00445-020- 01423-2 Giudicepietro, F., Esposito, A. M., Spina, L., Cannata, A.,Morgavi, D., Layer, L., et al. (2021). Clustering of experimental seismo-acoustic events using selforganizing map (SOM). Front. Earth Sci. 8, 581742. doi:10.3389/feart.2020. 581742 Giudicepietro, F., Calvari, S., Alparone, S., Bianco, F., Bonaccorso, A., Bruno, V., et al. (2019). Integration of ground-based remote-sensing and in situ multidisciplinary monitoring data to analyze the eruptive activity of Stromboli volcano in 2017-2018. Remote Sens. (Basel). 11, 1813. doi:10.3390/ rs11151813 Giudicepietro, F., Calvari, S., D’Auria, L., Di Traglia, F., Layer, L., Macedonio, G., et al. (2022). Changes in the eruptive style of Stromboli volcano before the 2019 paroxysmal phase discovered through SOM clustering of seismo-acoustic features compared with camera images and GBInSAR data. Remote Sens. 14, 1287. doi:10.3390/rs14051287 Giudicepietro, F., Lopez, C., Macedonio, G., Alparone, S., Bianco, F., Calvari, S., et al. (2020). Geophysical precursors of the July-August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring. Sci. Rep. 10, 10296. doi:10.1038/s41598-020-67220-1 Harris, A. J. L., and Stevenson, D. S. (1997). Magma budgets and steady-state activity of Vulcano and Stromboli. Geophys. Res. Lett. 24 (9), 1043–1046. doi:10. 1029/97gl00861 Harris, A., and Ripepe, M. (2007). Temperature and dynamics of degassing at Stromboli. J. Geophys. Res. 112, B03205. doi:10.1029/2006JB004393 Herring, T. A., Floyd, M. A., King, R. W., and McClusky, S. C. (2015). “Globk: Global kalman filter VLBI and GPS analysis program,” in Reference manual (Cambridge: Massachusetts Institute of Technology). Herring, T. A., King, R. W., Floyd, M. A., and McClusky, S. C. (2018). “GPS analysis at MIT,” in GAMIT reference manual (Cambridge: Massachusetts Institute of Technology). Hornig-Kjarsgaard, I., Keller, J., Koberski, U., Stadlbauer, E., Francalanci, L., and Lenhart, R. (1993). Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian arc, Italy. Acta Vulcanol. 3, 21–68. Inguaggiato, S., Diliberto, I. S., Federico, C., Paonita, A., and Vita, F. (2018). Review of the evolution of geochemical monitoring, networks and methodologies applied to the volcanoes of the Aeolian Arc (Italy). Earth-Science Rev. 176, 241–276. doi:10.1016/j.earscirev.2017.09.006 Inguaggiato, S., Vita, F., Cangemi, M., and Calderone, L. (2020). Changes in CO2 soil degassing style as a possible precursor to volcanic activity: The 2019 case of Stromboli paroxysmal eruptions. Appl. Sci. (Basel). 10, 4757. doi:10.3390/ app10144757 Inguaggiato, S., Vita, F., Cangemi, M., and Calderone, L. (2019). Increasing summit degassing at the Stromboli volcano and relationships with volcanic activity (2016–2018). Geosciences 9, 176. doi:10.3390/geosciences9040176 Inguaggiato, S., Vita, F., Cangemi, M., Inguaggiato, C., and Calderone, L. (2021). The monitoring of CO2 soil degassing as indicator of increasing volcanic activity: The paroxysmal activity at Stromboli volcano in 2019–2021. Geosciences 11, 169. doi:10.3390/geosciences11040169 Inguaggiato, S., Vita, F., Cangemi, M., Mazot, A., Sollami, A., Calderone, L., et al. (2017). Stromboli volcanic activity variations inferred from observations of fluid geochemistry: 16 years of continuous monitoring of soil CO2 fluxes (2000–2015). Chem. Geol. 469, 69–84. doi:10.1016/j.chemgeo.2017.01.030 Inguaggiato, S., Vita, F., Rouwet, D., Bobrowski, N., Morici, S., Sollami, A., et al. (2011). Geochemical evidence of the renewal of volcanic activity inferred from CO2 soil and SO2 plume fluxes: The 2007 Stromboli eruption (Italy). Bull. Volcanol. 73 (4), 443–456. doi:10.1007/s00445-010-0442-z Karamanolakis, G., Hsu, D., and Gravano, L. (2019). Weakly supervised attention networks for fine-grained opinion mining and public health. Stroudsburg, PA, USA: Association for Computational Linguistics, 1–10. Landi, P., Francalanci, L., Pompilio, M., Rosi, M., Corsaro, R. A., Petrone, C. M., et al. (2006). The December 2002–July 2003 effusive event at Stromboli volcano, Italy: Insights into the shallow plumbing system by petrochemical studies. J. Volcanol. Geotherm. Res. 155, 263–284. doi:10.1016/j.jvolgeores. 2006.03.032 Lucchi, F., Francalanci, L., De Astis, G., Tranne, C. A., Braschi, E., Klaver, M., et al. (2019). Geological evidence for recurrent collapse-driven phreatomagmatic pyroclastic density currents in the Holocene activity of Stromboli volcano, Italy. J. Volcanol. Geotherm. Res. 385, 81–102. doi:10.1016/ j.jvolgeores.2018.10.024 Marani, M. P., Gamberi, F., Rosi, M., Bertagnini, A., and Di Roberto, A. (2009). Subaqueous density flow processes and deposits of an island volcano landslide (Stromboli Island, Italy). Sedimentology 56, 1488–1504. doi:10.1111/j.1365-3091. 2008.01043.x Marotta, E., Calvari, S., Cristaldi, A., D’Auria, L., Di Vito, M. A., Moretti, R., et al. (2015). Reactivation of Stromboli’s summit craters at the end of the 2007 effusive eruption detected by thermal surveys and seismicity. J. Geophys. Res. solid earth 120, 7376–7395. doi:10.1002/2015JB012288 Marsella, M., Baldi, P., Coltelli, M., and Fabris, M. (2012). The morphological evolution of the Sciara del Fuoco since 1868: Reconstructing the effusive activity at Stromboli volcano. Bull. Volcanol. 74, 231–248. doi:10. 1007/s00445-011-0516-6 Martini, M., Giudicepietro, F., D’Auria, L., Esposito, A. M., Caputo, T., Curciotti, R., et al. (2007). Seismological monitoring of the February 2007 effusive eruption of the Stromboli volcano. Ann. Geophys. 50, 775–788. doi:10.4401/ag-3056 Mattia, M., Di Lieto, B., Ganci, G., Bruno, V., Romano, P., Ciancitto, F., et al. (2021). The 2019 eruptive activity at Stromboli volcano: A multidisciplinary approach to reveal hidden features of the “unexpected” 3 july paroxysm. Remote Sens. (Basel). 13, 4064. doi:10.3390/rs13204064 Merucci, L., Burton, M., Corradini, S., and Salerno, G. G. (2011). Reconstruction of SO2 flux emission chronology from space-based measurements. J. Volcanol. Geotherm. Res. 206, 80–87. doi:10.1016/j.jvolgeores.2011.07.002 Métrich, N., Bertagnini, A., Landi, P., Rosi, M., and Belhadj, O. (2005). Triggering mechanism at the origin of paroxysms at Stromboli (aeolian archipelago, Italy): The 5 April 2003 eruption. Geophys. Res. Lett. 32, L10305. doi:10.1029/2004GL022257 Métrich, N., Bertagnini, A., and Pistolesi, M. (2021). Paroxysms at Stromboli volcano (Italy): Source, genesis and dynamics. Front. Earth Sci. 9, 593339. doi:10. 3389/feart.2021.593339 Neri, M., and Lanzafame, G. (2009). Structural features of the 2007 Stromboli eruption. J. Volcanol. Geotherm. Res. 182, 137–144. doi:10.1016/j.jvolgeores.2008. 07.021 Orazi, M., Martini, M., and Peluso, R. (2006). Data acquisition for volcano monitoring. Eos Trans. AGU. 87 (38), 385. doi:10.1029/2006eo380002 Patané, D., Mattia, M., Di Grazia, G., Cannavò, F., Giampiccolo, E., Musumeci, C., et al. (2007). Insights into the dynamic processes of the 2007 Stromboli eruption and possible meteorological influences on the magmatic system. Geophys. Res. Lett. 34, L22309. doi:10.1029/2007GL031730 Peccerillo, A., and Taylor, S. R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contr. Mineral. Pet. 58 (1), 63–81. doi:10.1007/BF00384745 Peltier, A., Villeneuve, N., Ferrazzini, V., Testud, S., Hassen Ali, T., Boissier, P., et al. (2018). Changes in the long-term geophysical eruptive precursors at Piton de la Fournaise: Implications for the response management. Front. Earth Sci. 6, 104. doi:10.3389/feart.2018.00104 Pichavant, M., Di Carlo, I., Pompilio, M., and Le Gall, N. (2022). Timescales and mechanisms of paroxysm initiation at Stromboli volcano, Aeolian Islands, Italy. Italy. Bull. Volcanol. 84, 36. doi:10.1007/s00445-022-01545-9 Pioli, L., Rosi, M., Calvari, S., Spampinato, L., Renzulli, A., and Di Roberto, A. (2008). “The eruptive activity of 28 and 29 December 2002,” in The Stromboli volcano: An integrated study of the 2002-2003 eruption. Editors S. Calvari, S. Inguaggiato, G. Puglisi, M. Ripepe, and M. Rosi, 182, 105–116. Washington, D.C.: American Geophysical Union Monograph Series. doi:10. 1029/182GM10 Plank, S., Marchese, F., Filizzola, C., Pergola, N., Neri, M., Nolde, M., et al. (2019). The July/August 2019 Lava Flows at the Sciara del Fuoco, Stromboli–Analysis from Multi-Sensor Infrared Satellite Imagery. Remote Sens. (Basel). 11, 2879. doi:10.3390/ rs11232879 Platt, A., and Stutz, U. (2008). Differential optical absorption spectroscopy - principles and applications. Heidelberg: Springer. doi:10.1007/978-3-540-75776-4 Ripepe, M., Delle Donne, D., Lacanna, G., Marchetti, E., and Ulivieri, G. (2009). The onset of the 2007 Stromboli effusive eruption recorded by an integrated geophysical network. J. Volcanol. Geotherm. Res. 182, 131–136. doi:10.1016/j. jvolgeores.2009.02.011 Rittmann, A. (1931). Der ausbruch des Stromboli am 11 September 1930. Z. fu€r Vulkanol. 14, 47–77. Roeloffs, E. A., and Linde, A. T. (2007). “Borehole observations of continuous strain and fluid pressure,” in Volcano deformation (Berlin, Heidelberg: Springer). Springer Praxis Books. doi:10.1007/978-3-540-49302-0_9 Romagnoli, C., Casalbore, D., Bortoluzzi, G., Bosman, A., Chiocci, F. L., D’Oriano, F., et al. (2013). Chapter 4 bathy-morphological setting of the aeolian islands. Geol. Soc. Lond. Memoirs 37, 27–36. doi:10.1144/m37.4 Romagnoli, C., Kokelaar, P., Rossi, P. L., and Sodi, A. (1993). The submarine extension of Sciara del Fuoco feature (Stromboli isl.): Morphologic characterization. Acta Vulcanol. 3, 91–98. Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., et al. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172. doi:10.1016/j.rse.2014. 02.001 Rudolf, H., Leva, D., Tarchi, D., and Sieber, A. J. (1999). “A mobile and versatile SAR system,” in IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June 1999 - 02 July 1999, 592–594. IGARSS’99 (Cat. No. 99CH36293). Sacks, S., Suyehiro, S., Evertson, D. W., and Yamagishi, Y. (1971). Sacks- Evertson strainmeter, its installation in Japan and some preliminary results concerning strain steps. Pap. Mater. Geophy. 22, 195–208. doi:10.2467/ mripapers1950.22.3-4_195 Salerno, G. G., Burton, M., Di Grazia, G., Caltabiano, T., and Oppenheimer, C. (2018). Coupling between magmatic degassing and volcanic tremor in basaltic volcanism. Front. Earth Sci. 6, 157. doi:10.3389/feart.2018.00157 Salerno, G. G., Burton, M. R., Oppenheimer, C., Caltabiano, T., Randazzo, D., Bruno, N., et al. (2009a). Three-years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: Comparison with conventional traverses and uncertainties in flux retrieval. J. Volcanol. Geotherm. Res. 183, 76–83. doi:10.1016/j. jvolgeores.2009.02.013 Salerno, G. G., Burton,M. R., Oppenheimer, C., Caltabiano, T., Tsanev, V., Bruno, N., et al. (2009b). Novel retrieval of volcanic SO2 abundance from ultraviolet spectra. J. Volcanol. Geotherm. Res. 181, 141–153. doi:10.1016/j.jvolgeores.2009. 01.009 Salvatici, T., Di Roberto, A., Di Traglia, F., Bisson, M., Morelli, S., Fidolini, F., et al. (2016). From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy). Geomorphology 273, 93–106. doi:10.1016/J.GEOMORPH.2016. 08.011 Schaefer, L. N., Di Traglia, F., Chaussard, E., Lu, Z., Nolesini, T., Casagli, N., et al. (2019). Monitoring volcano slope instability with synthetic aperture radar: A review and new data from pacaya (Guatemala) and Stromboli (Italy) volcanoes. Earth- Science Rev. 192, 236–257. doi:10.1016/j.earscirev.2019.03.009 Schmid, M., Kueppers, U., Civico, R., Ricci, T., Taddeucci, J., Dingwell, D. B., et al. (2021). Characterising vent and crater shape changes at Stromboli: Implications for risk areas. Volcanica 4 (1), 87–105. doi:10.30909/vol.04.01.87105 Silvestri, M., Marotta, E., Buongiorno, M. F., Avvisati, G., Belviso, P., Bellucci Sessa, E., et al. (2020a). Monitoring of surface temperature on parco delle biancane (Italian geothermal area) using optical satellite data, UAV and field campaigns. Remote Sens. (Basel). 12 (12), 2018. doi:10.3390/ rs12122018 Silvestri, M., Romaniello, V., Hook, S., Musacchio, M., Teggi, S., Buongiorno, M. F., et al. (2020b). First comparisons of surface temperature estimations between ECOSTRESS, ASTER and Landsat 8 over Italian volcanic and geothermal areas. Remote Sens. (Basel). 12 (1), 184. doi:10.3390/rs12010184 Solana, M. C., Calvari, S., Kilburn, C. R. J., Gutierrez, H., Chester, D., and Duncan, A. (2017). “Supporting the development of procedures for communications during volcanic emergencies: Lessons learnt from the canary islands (Spain) and Etna and Stromboli (Italy),” in Advances in Volcanology, observing the volcano world, volcano crisis communication. Editors C. J. Fearnley, D. K. Bird, K. Haynes, W. J. McGuire, and G. Jolly (Switzerland AG: Springer Open), 289–305. ISBN 978-3-319-44095-8. doi:10.1007/11157_2016_48 Spampinato, L., Calvari, S., Oppenheimer, C., and Lodato, L. (2008). Shallow magma transport for the 2002–3 Mt. Etna eruption inferred from thermal infrared surveys. J. Volcanol. Geotherm. Res. 177, 301–312. doi:10.1016/j.jvolgeores.2008. 05.013 Tibaldi, A. (2001). Multiple sector collapses at Stromboli volcano, Italy: How they work. Bull. Volcanol. 63, 112–125. doi:10.1007/s004450100129 Tinti, S., Manucci, A., Pagnoni, G., Armigliato, A., and Zaniboni, F. (2005). The 30 December 2002 landslide-induced tsunamis in Stromboli: Sequence of the events reconstructed from the eyewitness accounts. Nat. Hazards Earth Syst. Sci. 5, 763–775. doi:10.5194/nhess-5-763-2005 Tioukov, V., Giudicepietro, F., Macedonio, G., Calvari, S., Di Traglia, F., Fornaciai, A., et al. (2022). “Structure of the shallow supply system at Stromboli volcano, Italy, through integration of muography, digital elevation models, seismicity, and ground deformation data,” in Muography: Exploring earth’s subsurface with elementary particles. Editors L. Olah, H. K. M. Tanaka, and D. Varga (Hoboken, NJ: Wiley), 75–91. American Geophysical Union, Geophysical Monograph 270. doi:10.1002/9781119722748 Tommasi, P., Baldi, P., Chiocci, F. L., Coltelli, M., Marsella, M., Pompilio, M., et al. (2005). “The landslide sequence induced by the 2002 eruption at Stromboli volcano,” in Landslide - risk analysis and sustainable disaster management. Editors K. Sassa, H. Fukuoka, F. W. Wang, and G. Wang (Springer-Verlag), 251–258. ISBN: 3-540-28664-0. Walker, G. P. L. (1971). Grain-size characteristics of pyroclastic deposits. J. Geol. 79, 696–714. doi:10.1086/627699 Wan, Z. (2014). New refinements and validation of the collection-6 MODIS landsurface temperature/emissivity product. Remote Sens. Environ. 140, 36–45. doi:10. 1016/j.rse.2013.08.027 Washington, H. S. (1917). Persistence of vents at Stromboli and its bearing on volcanic mechanism. Geol. Soc. Am. Bull. 28, 249–278. doi:10.1130/gsab-28-249 Wu, L., Zheng, S., De Santis, A., Qin, K., Di Mauro, R., Liu, S., et al. (2016). Geosphere coupling and hydrothermal anomalies before the 2009 Mw 6.3 L’Aquila earthquake in Italy. Nat. Hazards Earth Syst. Sci. 16, 1859–1880. doi:10.5194/nhess- 16-1859-2016 Yamaguchi,Y., Kahle, A. B.,Tsu,H., Kawakami,T., and Pniel,M. (1998). Overviewof advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 36 (4), 1062–1071. doi:10.1109/36.700991 Zago, V., Bilotta, G., Cappello, A., Dalrymple, R. A., Fortuna, L., Ganci, G., et al. (2017). Simulating complex fluids with smoothed particle hydrodynamics. Ann. Geophys. 60 (6). doi:10.4401/ag-7362 Zago, V., Bilotta, G., Cappello, A., Dalrymple, R. A., Fortuna, L., Ganci, G., et al. (2019). Preliminary validation of lava benchmark tests on the GPUSPH particle engine. Ann. Geophys 62 (2), VO224. doi:10.4401/ag-7870 Zanon, V., Neri, M., and Pecora, E. (2009). Interpretation of data from the monitoring thermal camera of Stromboli volcano (Aeolian Islands, Italy). Geol. Mag. 146 (4), 591–601. doi:10.1017/s0016756809005937 Zhou, S., Tordesillas, A., Intrieri, E., Di Traglia, F., Qian, G., Catani, F., et al. (2022). Pinpointing early signs of impending slope failures from space. JGR. Solid Earth 127, e2021JB022957. doi:10.1029/2021JB022957; http://hdl.handle.net/2122/15701Test; http://journal.frontiersin.org/article/10.3389/feart.2022.899635/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Earth_Science&id=899635Test

  4. 4
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Università degli Studi di Napoli Federico II, Dipartimento di Ingegneria Civile, Edile e Ambientale,Via Claudio 21, 80125 Naples, Italy, Dipartimento di Ingegneria Civile, Edile e Ambientale,Via Claudio 21, 80125 Naples, Italy, CNR IGAG, Consiglio Nazionale delle Ricerche, Istituto di Geologia Ambientale e Geoingegneria, CNR ISPC, Consiglio Nazionale delle Ricerche, Istituto di Scienze del Patrimonio Culturale, CNR IGG, Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse

    العلاقة: Italian Journal of Geosciences; 3/140 (2021); http://hdl.handle.net/2122/15484Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المساهمون: Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia, Department of Biology-Genetics, University of Bari, Via E. Orabona, 4, Bari 70124, Italy - Department of Geosciences, University of Padova, Via Gradenigo 6, Padova 35131, Italy, Department of Geosciences, University of Padova, Via Gradenigo 6, Padova 35131, Italy, Museum of Anthropology, University of Padova, Palazzo Cavalli, via Giotto 1, Padova 35121, Italy, Department of Human Genetics, KU Leuven, Leuven, Herestraat 49 3000, Belgium 6Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, Rome 00185, Italy 7McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK, Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, Rome 00185, Italy 7McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK, McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK, Core Facility, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia, Department of Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ, UK - Palaeogenomics & Bio-Archaeology Research Network, School of Archaeology, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK 11Groningen Institute of Archaeology, University of Groningen, Poststraat 6, Groningen 9712, the Netherlands 12Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Via Diocleziano 328, Naples 80125, Ital, Groningen Institute of Archaeology, University of Groningen, Poststraat 6, Groningen 9712, the Netherlands, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome ‘‘Tor Vergata,’’ Via della Ricerca Scientifica 1, Rome 00133, Italy, Department of History, Culture and Society, University of Rome ‘‘Tor Vergata,’’ Via Columbia 1, Rome 00133, Italy, Department of Archaeology, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK, Independent scholar, Cagliari, Italy, Department of Chemistry ‘‘Giacomo Ciamician,’’ University of Bologna, Via Selmi 2, Bologna 40126, Italy - Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany, School of History, Classics and Archaeology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK, School of HistorySuperintendency of Archeology, Fine Arts and Landscape for the metropolitan city of Bologna and the provinces of Modena, Reggio Emilia and Ferrara, Comune di Bologna, Sede Via Belle Arti n. 52, Bologna 40126, Italy, Department of Cultural Heritage, University of Bologna, Via degli Ariani, 1, Ravenna 40126, Italy, Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK - Dipartimento di Scienze Chimiche, della Vita e della Sostenibilita` Ambientale, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy, Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia - Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35122, Italy, Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia - St. John’s College, University of Cambridge, St. John’s Street, Cambridge CB2 1TP, UK

    العلاقة: Current biology; 12/31(2021); Pearce, M. (2019). The ‘‘copper age’’—a history of the concept. J. World Prehist. 32, 229–250. 2. Dolfini, A. (2020). From the Neolithic to the Bronze Age in Central Italy: settlement, burial, and social change at the dawn of metal production. J. Archaeol. Res. 28, 503–556. 3. Skoglund, P., Malmstro¨ m, H., Raghavan, M., Stora˚ , J., Hall, P., Willerslev, E., Gilbert, M.T.P., Go¨ therstro¨ m, A., and Jakobsson, M. (2012). Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469. 4. Mathieson, I., Alpaslan-Roodenberg, S., Posth, C., Szecs enyi-Nagy, A., Rohland, N., Mallick, S., Olalde, I., Broomandkhoshbacht, N., Candilio, F., Cheronet, O., et al. (2018). The genomic history of southeastern Europe. Nature 555, 197–203. 5. Hofmanova´ , Z., Kreutzer, S., Hellenthal, G., Sell, C., Diekmann, Y., Dı´ez Del-Molino, D., van Dorp, L., Lo´ pez, S., Kousathanas, A., Link, V., et al. (2016). Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. USA 113, 6886–6891. 6. Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K., Sudmant, P.H., Schraiber, J.G., Castellano, S., Lipson, M., et al. (2014). Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413. 7. Allentoft, M.E., Sikora, M., Sjo¨ gren, K.-G., Rasmussen, S., Rasmussen, M., Stenderup, J., Damgaard, P.B., Schroeder, H., Ahlstro¨ m, T., Vinner, L., et al. (2015). Population genomics of Bronze Age Eurasia. Nature 522, 167–172. 8. Olalde, I., Mallick, S., Patterson, N., Rohland, N., Villalba-Mouco, V., Silva, M., Dulias, K., Edwards, C.J., Gandini, F., Pala, M., et al. (2019). The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234. 9. Olalde, I., Brace, S., Allentoft, M.E., Armit, I., Kristiansen, K., Booth, T., Rohland, N., Mallick, S., Szecs enyi-Nagy, A., Mittnik, A., et al. (2018). The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196. 10. Haak, W., Lazaridis, I., Patterson, N., Rohland, N., Mallick, S., Llamas, B., Brandt, G., Nordenfelt, S., Harney, E., Stewardson, K., et al. (2015). Massive migration from the steppe was a source for Indo-European lan guages in Europe. Nature 522, 207–211. 11. Raveane, A., Aneli, S., Montinaro, F., Athanasiadis, G., Barlera, S., Birolo, G., Boncoraglio, G., Di Blasio, A.M., Di Gaetano, C., Pagani, L., et al. (2019). Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. Sci. Adv. 5, eaaw3492. 12. Lazaridis, I., Mittnik, A., Patterson, N., Mallick, S., Rohland, N., Pfrengle, S., Furtwangler, A., Peltzer, A., Posth, C., Vasilakis, A., et al. (2017). € Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218. 13. Antonio, M.L., Gao, Z., Moots, H.M., Lucci, M., Candilio, F., Sawyer, S., Oberreiter, V., Calderon, D., Devitofranceschi, K., Aikens, R.C., et al. (2019). Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714. 14. Keller, A., Graefen, A., Ball, M., Matzas, M., Boisguerin, V., Maixner, F., Leidinger, P., Backes, C., Khairat, R., Forster, M., et al. (2012). New in sights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698. 15. Fu, Q., Posth, C., Hajdinjak, M., Petr, M., Mallick, S., Fernandes, D., Furtwangler, A., Haak, W., Meyer, M., Mittnik, A., et al. (2016). The ge- € netic history of Ice Age Europe. Nature 534, 200–205. 16. Fernandes, D.M., Mittnik, A., Olalde, I., Lazaridis, I., Cheronet, O., Rohland, N., Mallick, S., Bernardos, R., Broomandkhoshbacht, N., Carlsson, J., et al. (2020). The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 4, 334–345. 17. Marcus, J.H., Posth, C., Ringbauer, H., Lai, L., Skeates, R., Sidore, C., Beckett, J., Furtwangler, A., Olivieri, A., Chiang, C.W.K., et al. (2020). € Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939. 18. Mittnik, A., Massy, K., Knipper, C., Wittenborn, F., Friedrich, R., Pfrengle, S., Burri, M., Carlichi-Witjes, N., Deeg, H., Furtwangler, A., et al. (2019). € Kinship-based social inequality in Bronze Age Europe. Science 366, 731–734. Schroeder, H., Margaryan, A., Szmyt, M., Theulot, B., W1odarczak, P., Rasmussen, S., Gopalakrishnan, S., Szczepanek, A., Konopka, T., Jensen, T.Z.T., et al. (2019). Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave. Proc. Natl. Acad. Sci. USA 116, 10705– 10710. 20. Racimo, F., Sikora, M., Vander Linden, M., Schroeder, H., and Lalueza Fox, C. (2020). Beyond broad strokes: sociocultural insights from the study of ancient genomes. Nat. Rev. Genet. 21, 355–366. 21. Sa´ nchez-Quinto, F., Malmstro¨ m, H., Fraser, M., Girdland-Flink, L., Svensson, E.M., Simo˜ es, L.G., George, R., Hollfelder, N., Burenhult, G., Noble, G., et al. (2019). Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society. Proc. Natl. Acad. Sci. USA 116, 9469–9474. 22. Scheib, C.L., Hui, R., D’Atanasio, E., Wohns, A.W., Inskip, S.A., Rose, A., Cessford, C., O’Connell, T.C., Robb, J.E., Evans, C., et al. (2019). East Anglian early Neolithic monument burial linked to contemporary Megaliths. Ann. Hum. Biol. 46, 145–149. 23. Saag, L., Varul, L., Scheib, C.L., Stenderup, J., Allentoft, M.E., Saag, L., Pagani, L., Reidla, M., Tambets, K., Metspalu, E., et al. (2017). Extensive farming in Estonia started through a sex-biased migration from the Steppe. Curr. Biol. 27, 2185–2193.e6. 24. Martiniano, R., Cassidy, L.M., O´ ’Maoldu´ in, R., McLaughlin, R., Silva, N.M., Manco, L., Fidalgo, D., Pereira, T., Coelho, M.J., Serra, M., et al. (2017). The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplo type-based methods. PLoS Genet. 13, e1006852. 25. Knipper, C., Mittnik, A., Massy, K., Kociumaka, C., Kucukkalipci, I., Maus, M., Wittenborn, F., Metz, S.E., Staskiewicz, A., Krause, J., and Stockhammer, P.W. (2017). Female exogamy and gene pool diversifica tion at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proc. Natl. Acad. Sci. USA 114, 10083–10088. 26. Furholt, M. (2019). Re-integrating archaeology: a contribution to aDNA studies and the migration discourse on the 3rd millennium BC in Europe. Proc. Prehist. Soc. 85, 115–129. 27. Olalde, I., Allentoft, M.E., Sa´ nchez-Quinto, F., Santpere, G., Chiang, C.W.K., DeGiorgio, M., Prado-Martinez, J., Rodrı´guez, J.A., Rasmussen, S., Quilez, J., et al. (2014). Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228. 28. Brace, S., Diekmann, Y., Booth, T.J., van Dorp, L., Faltyskova, Z., Rohland, N., Mallick, S., Olalde, I., Ferry, M., Michel, M., et al. (2019). Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771. 29. Saag, L., Laneman, M., Varul, L., Malve, M., Valk, H., Razzak, M.A., Shirobokov, I.G., Khartanovich, V.I., Mikhaylova, E.R., Kushniarevich, A., et al. (2019). The arrival of Siberian ancestry connecting the Eastern Baltic to Uralic speakers further East. Curr. Biol. 29, 1701–1711.e16. 30. Wilde, S., Timpson, A., Kirsanow, K., Kaiser, E., Kayser, M., Unterlander, € M., Hollfelder, N., Potekhina, I.D., Schier, W., Thomas, M.G., and Burger, J. (2014). Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl. Acad. Sci. USA 111, 4832–4837. 31. Mathieson, S., and Mathieson, I. (2018). FADS1 and the timing of human adaptation to agriculture. Mol. Biol. Evol. 35, 2957–2970. 32. Roberts, C.A., Lewis, M.E., and Manchester, K. (2002). The past and pre sent of leprosy: archaeological, historical, palaeopathological and clinical approaches. In Proceedings of the 3rd International Congress on the Evolution and Palaeoepidemiology of the Infectious Diseases, ICEPID, 26-31 July 1999, University of Bradford, C.A. Roberts, et al., eds. (Archaeopress). 33. Mariotti, V., Dutour, O., Belcastro, M.G., Facchini, F., and Brasili, P. (2005). Probable early presence of leprosy in Europe in a Celtic skeleton of the 4th-3rd century BC (Casalecchio di Reno, Bologna, Italy). Int. J. Osteoarchaeol. 15, 311–325. 34. Kalisch, P.A. (1975). An overview of research on the history of leprosy. Part 1. From Celsus to Simpson, Circa. 1 AD Part 2. From Virchow to Møller-Christense, 1845-1973. Int. J. Lepr. Other Mycobact. Dis. 43, 129–144. 35. Schuring, R.P., Hamann, L., Faber, W.R., Pahan, D., Richardus, J.H., Schumann, R.R., and Oskam, L. (2009). Polymorphism N248S in the hu man Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J. Infect. Dis. 199, 1816–1819. 36. Wong, S.H., Gochhait, S., Malhotra, D., Pettersson, F.H., Teo, Y.Y., Khor, C.C., Rautanen, A., Chapman, S.J., Mills, T.C., Srivastava, A., et al. (2010). Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog. 6, e1000979. 37. Sapkota, B.R., Macdonald, M., Berrington, W.R., Misch, E.A., Ranjit, C., Siddiqui, M.R., Kaplan, G., and Hawn, T.R. (2010). Association of TNF, MBL, and VDR polymorphisms with leprosy phenotypes. Hum. Immunol. 71, 992–998. 38. Misch, E.A., Macdonald, M., Ranjit, C., Sapkota, B.R., Wells, R.D., Siddiqui, M.R., Kaplan, G., and Hawn, T.R. (2008). Human TLR1 defi ciency is associated with impaired mycobacterial signaling and protec tion from leprosy reversal reaction. PLoS Negl. Trop. Dis. 2, e231. 39. Krause-Kyora, B., Nutsua, M., Boehme, L., Pierini, F., Pedersen, D.D., Kornell, S.-C., Drichel, D., Bonazzi, M., Mo¨ bus, L., Tarp, P., et al. (2018). Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans. Nat. Commun. 9, 1569. 40. Monroy Kuhn, J.M., Jakobsson, M., and Gu¨ nther, T. (2018). Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491. 41. Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, M., Cheng, H., Lawrence Edwards, R., Friedrich, M., et al. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725–757. 42. Stuiver, M., Reimer, P.J., and Reimer, R.W. (2021). CABLIB 8.2. http:// calib.org/calib/. 43. Ramsey, C.B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. 44. Patterson, N., Price, A.L., and Reich, D. (2006). Population structure and eigenanalysis. PLoS Genet. 2, e190. 45. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., and Reich, D. (2006). Principal components analysis corrects for stratifi cation in genome-wide association studies. Nat. Genet. 38, 904–909. 46. Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D.C., Rohland, N., Mallick, S., Fernandes, D., Novak, M., Gamarra, B., Sirak, K., et al. (2016). Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424. 47. Lipson, M., Szecs enyi-Nagy, A., Mallick, S., Po ´ sa, A., Stegma ´r, B., Keerl, V., Rohland, N., Stewardson, K., Ferry, M., Michel, M., et al. (2017). Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372. 48. Brunel, S., Bennett, E.A., Cardin, L., Garraud, D., Barrand Emam, H., Beylier, A., Boulestin, B., Chenal, F., Ciesielski, E., Convertini, F., et al. (2020). Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl. Acad. Sci. USA 117, 12791– 12798. 49. Rivollat, M., Jeong, C., Schiffels, S., Ku¨ c¸ u¨ kkalıpc¸ ı, _ I., Pemonge, M.-H., Rohrlach, A.B., Alt, K.W., Binder, D., Friederich, S., Ghesquie`re, E., et al. (2020). Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344. 50. Shennan, S. (2018). The First Farmers of Europe: An Evolutionary Perspective (Cambridge University Press). 51. Sarno, S., Boattini, A., Pagani, L., Sazzini, M., De Fanti, S., Quagliariello, A., Gnecchi Ruscone, G.A., Guichard, E., Ciani, G., Bortolini, E., et al. (2017). Ancient and recent admixture layers in Sicily and Southern Italy race multiple migration routes along the Mediterranean. Sci. Rep. 7, 1984. 52. Joseph, T.A., and Pe’er, I. (2019). Inference of population structure from time-series genotype data. Am. J. Hum. Genet. 105, 317–333. 53. Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655– 1664. 54. Sikora, M., Carpenter, M.L., Moreno-Estrada, A., Henn, B.M., Underhill, P.A., Sa´ nchez-Quinto, F., Zara, I., Pitzalis, M., Sidore, C., Busonero, F., et al. (2014). Population genomic analysis of ancient and modern ge nomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe. PLoS Genet. 10, e1004353. 55. Lawson, D.J., Hellenthal, G., Myers, S., and Falush, D. (2012). Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453. 56. Chaco´ n-Duque, J.-C., Adhikari, K., Fuentes-Guajardo, M., Mendoza Revilla, J., Acun˜ a-Alonzo, V., Barquera, R., Quinto-Sa´ nchez, M., Go´ mez-Valdes, J., Everardo Martı ´nez, P., Villamil-Ramı´rez, H., et al. (2018). Latin Americans show wide-spread Converso ancestry and imprint of local Native ancestry on physical appearance. Nat. Commun. 9, 5388. 57. Ongaro, L., Scliar, M.O., Flores, R., Raveane, A., Marnetto, D., Sarno, S., Gnecchi-Ruscone, G.A., Alarco´ n-Riquelme, M.E., Patin, E., Wangkumhang, P., et al. (2019). The genomic impact of European colo nization of the Americas. Curr. Biol. 29, 3974–3986.e4. 58. Kivisild, T. (2017). The study of human Y chromosome variation through ancient DNA. Hum. Genet. 136, 529–546. 59. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7. 60. Hui, R., D’Atanasio, E., Cassidy, L.M., Scheib, C.L., and Kivisild, T. (2020). Evaluating genotype imputation pipeline for ultra-low coverage ancient genomes. Sci. Rep. 10, 18542. 61. Ringbauer, H., Novembre, J., and Steinru¨ cken, M. (2020). Human parental relatedness through time - detecting runs of homozygosity in ancient DNA. bioRxiv. https://doi.org/10.1101/2020.05.31.126912Test. 62. The 1000 Genomes Project Consortium (2015). A global reference for hu man genetic variation. Nature 526, 68–74. 63. MacAskill, M.R. (2012). DataGraph 3.0. J. Statist. Softw. Softw. Rev. 47, 1–9. 64. Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S.A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., et al. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503. 65. Damgaard, P.B., Marchi, N., Rasmussen, S., Peyrot, M., Renaud, G., Korneliussen, T., Moreno-Mayar, J.V., Pedersen, M.W., Goldberg, A., Usmanova, E., et al. (2018). 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374. 66. Zhang, F.-R., Huang, W., Chen, S.-M., Sun, L.-D., Liu, H., Li, Y., Cui, Y., Yan, X.-X., Yang, H.-T., Yang, R.-D., et al. (2009). Genomewide associa tion study of leprosy. N. Engl. J. Med. 361, 2609–2618. 67. Johnson, C.M., Lyle, E.A., Omueti, K.O., Stepensky, V.A., Yegin, O., Alpsoy, E., Hamann, L., Schumann, R.R., and Tapping, R.I. (2007). Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol. 178, 7520–7524. 68. Qi, H., Sun, L., Wu, X., Jin, Y., Xiao, J., Wang, S., Shen, C., Chu, P., Qi, Z., Xu, F., et al. (2015). Toll-like receptor 1(TLR1) gene SNP rs5743618 is associated with increased risk for tuberculosis in Han Chinese children. Tuberculosis (Edinb.) 95, 197–203. 69. Ko¨ hler, K., Marcsik, A., Za´ dori, P., Biro, G., Szeniczey, T., Fa´ bia´ n, S., Serlegi, G., Marton, T., Donoghue, H.D., and Hajdu, T. (2017). Possible cases of leprosy from the Late Copper Age (3780-3650 cal BC) in Hungary. PLoS ONE 12, e0185966. 70. Donoghue, H.D., Marcsik, A., Matheson, C., Vernon, K., Nuorala, E., Molto, J.E., Greenblatt, C.L., and Spigelman, M. (2005). Co-infection of Mycobacterium tuberculosis and Mycobacterium leprae in human archaeological samples: a possible explanation for the historical decline of leprosy. Proc. Biol. Sci. 272, 389–394. 71. Behar, D.M., van Oven, M., Rosset, S., Metspalu, M., Loogvali, E.-L., € Silva, N.M., Kivisild, T., Torroni, A., and Villems, R. (2012). A ‘‘Copernican’’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684. 72. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A.R., Teumer, A., Kang, H.M., Fuchsberger, C., Danecek, P., Sharp, K., et al.; Haplotype Reference Consortium (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283. 73. Meyer, M., and Kircher, M. (2010). Illumina sequencing library prepara tion for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448. 74. Martin, M. (2011). Cutadapt removes adapter sequences from high throughput sequencing reads. EMBnet. J. 17, 10–12. 75. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. 76. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 77. DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next generation DNA sequencing data. Nat. Genet. 43, 491–498. 78. Jo´ nsson, H., Ginolhac, A., Schubert, M., Johnson, P.L.F., and Orlando, L. (2013). mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684. l9. Jones, E.R., Zarina, G., Moiseyev, V., Lightfoot, E., Nigst, P.R., Manica, A., Pinhasi, R., and Bradley, D.G. (2017). The Neolithic transition in the Baltic was not driven by admixture with Early European farmers. Curr. Biol. 27, 576–582. 80. Korneliussen, T.S., Albrechtsen, A., and Nielsen, R. (2014). ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356. 81. Skoglund, P., Stora˚ , J., Go¨ therstro¨ m, A., and Jakobsson, M. (2013). Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482. 82. Weissensteiner, H., Pacher, D., Kloss-Brandstatter, A., Forer, L., Specht, € G., Bandelt, H.-J., Kronenberg, F., Salas, A., and Scho¨ nherr, S. (2016). HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63. 83. Quinlan, A.R. (2014). BEDTools: the Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–11.12.34. 84. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., and Sham, P.C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. 85. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al.; 1000 Genomes Project Analysis Group (2011). The variant call format and VCFtools. Bioinformatics 27, 2156–2158. 86. Browning, B.L., and Browning, S.R. (2016). Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126. 87. R Development Core Team (2013). R: A language and environment for statistical computing (R Foundation for Statistical Computing). 88. Link, V., Kousathanas, A., Veeramah, K., Sell, C., Scheu, A., and Wegmann, D. (2017). ATLAS: analysis tools for low-depth and ancient samples. bioRxiv. https://doi.org/10.1101/105346Test 9. Chaitanya, L., Breslin, K., Zun˜ iga, S., Wirken, L., Po spiech, E., Kukla Bartoszek, M., Sijen, T., Knijff, P., Liu, F., Branicki, W., et al. (2018). The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: introduction and forensic developmental validation. Forensic Sci. Int. Genet. 35, 123–135. 90. Walsh, S., Liu, F., Wollstein, A., Kovatsi, L., Ralf, A., Kosiniak-Kamysz, A., Branicki, W., and Kayser, M. (2013). The HIrisPlex system for simulta neous prediction of hair and eye colour from DNA. Forensic Sci. Int. Genet. 7, 98–115. 91. Fedele, F. (2013). I Covoloni del Broion (colli Berici, VI). In L’eta` del Rame. La pianura Padana e le Alpi al tempo di O¨ tzi., R. De Marinis, ed. (Compagnia della Stampa), pp. 450–456. 92. Alessandri, L., and Rolfo, M.F. (2016). L’utilizzo delle cavita` naturali nella media eta` del Bronzo: nuovi dati dal Lazio meridionale.CVII (Bollettino della Unione Storia ed Arte), pp. 109–126. 93. Anzidei, A.P., and Carboni, G. (2013). L’eneolitico recente e finale nel Lazio centro-meridionale: una puntualizzazione sullo sviluppo e la durata di alcuni aspetti culturali sulla base delle piu` recenti datazioni radiome triche. In Cronologia Assoluta e Relativa Dell’eta` Del Rame in Italia, C. Genick, ed. (QuiEdit), pp. 98–118. 94. Alessandri, L. (2019). The early and Middle Bronze Age (1/2) in South and central Tyrrhenian Italy and their connections with the Avellino eruption: An overview. Quat. Int. 499, 161–185. 95. Alessandri, L., Baiocchi, V., Del Pizzo, S., Rolfo, M.F., and Troisi, S. (2019). Photogrammetric survey with fisheye lens for the characterization of the La Sassa cave. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 42-2/W9, 25–32. 96. Anzidei, A.P., and Carboni, G. (2006). Rinaldone e Gaudo in un territorio di confine: il Lazio centro-meridionale. In Atti Del VII Incontro Di Studi Preistoria e Protostoria in Etruria. Pastori e Guerrieri Nell’Etruria Del IV e III Millennio a.C. La Civilta´ Di Rinaldone a 100 Anni Dalle Prime Scoperte, N. Catacchio, ed. (Centro Studi di Preistoria e Archeologia), pp. 174–192. 97. Lovejoy, C.O. (1985). Dental wear in the Libben population: its functional pattern and role in the determination of adult skeletal age at death. Am. J. Phys. Anthropol. 68, 47–56. 98. Rogers, T.L. (2005). Determining the sex of human remains through cra nial morphology. J. Forensic Sci. 50, 493–500. 99. Talamo, S., and Richards, M. (2011). A comparison of bone pretreatment methods for AMS dating of samples > 30,000 BP. Radiocarbon 53, 443–449. 100. Longin, R. (1971). New method of collagen extraction for radiocarbon dating. Nature 230, 241–242. 101. Brown, T., Nelson, D., Vogel, J., and Southon, J. (1988). Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177. 102. Brock, F., Ramsey, C., and Higham, T. (2007). Quality assurance of ultra filtered bone dating. Radiocarbon 49, 187–192. 103. van Klinken, G.J. (1999). Bone collagen quality indicators for palaeodiet ary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695. 104. Kromer, B., Lindauer, S., Synal, H.-A., and Wacker, L. (2013). MAMS – a new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nucl. Instrum. Methods Phys. Res. B 294, 11–13. 105. Korlevic, P., Talamo, S., and Meyer, M. (2018). A combined method for DNA analysis and radiocarbon dating from a single sample. Sci. Rep. 8, 4127. 106. Angle, M., Catracchia, F., Cavazzuti, C., Celletti, P., Malorgio, M., and Mancini, D. (2010). La grotta Regina Margherita a Collepardo (Frosinone). In Lazio e Sabina. Atti del Convegno: Sesto incontro di studi sul Lazio e la Sabina, G. Ghini, ed. (Atti del Convegno. Sesto Incontro di Studi sul La-zio e la Sabina), pp. 381–396. 107. Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini, E., Petersen, B., Moltke, I., et al. (2013). Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78. 108. Malaspinas, A.-S., Lao, O., Schroeder, H., Rasmussen, M., Raghavan, M., Moltke, I., Campos, P.F., Sagredo, F.S., Rasmussen, S., Gonc¸ alves, V.F., et al. (2014). Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. Curr. Biol. 24, R1035–R1037. 109. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M.A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303. 110. van Oven, M., and Kayser, M. (2009). Updated comprehensive phyloge netic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394. 111. Hallast, P., Batini, C., Zadik, D., Maisano Delser, P., Wetton, J.H., Arroyo Pardo, E., Cavalleri, G.L., de Knijff, P., Destro Bisol, G., Dupuy, B.M., et al. (2015). The Y-chromosome tree bursts into leaf: 13,000 high-confidence SNPs covering the majority of known clades. Mol. Biol. Evol. 32, 661–673. 112. Karmin, M., Saag, L., Vicente, M., Wilson Sayres, M.A., Jarve, M., Talas, € U.G., Rootsi, S., Ilumae, A.-M., M € agi, R., Mitt, M., et al. (2015). A recent € bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 25, 459–466. 113. Poznik, G.D., Xue, Y., Mendez, F.L., Willems, T.F., Massaia, A., Wilson Sayres, M.A., Ayub, Q., McCarthy, S.A., Narechania, A., Kashin, S., et al.; 1000 Genomes Project Consortium (2016). Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences. Nat. Genet. 48, 593–599. 114. Broushaki, F., Thomas, M.G., Link, V., Lo´ pez, S., van Dorp, L., Kirsanow, K., Hofmanova´ , Z., Diekmann, Y., Cassidy, L.M., Dı´ez-Del-Molino, D., et al. (2016). Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503. 115. Harney, E´ ., May, H., Shalem, D., Rohland, N., Mallick, S., Lazaridis, I., Sarig, R., Stewardson, K., Nordenfelt, S., Patterson, N., et al. (2018). Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336. 116. Gu¨ nther, T., Malmstro¨ m, H., Svensson, E.M., Omrak, A., Sa´ nchez Quinto, F., Kılınc¸ , G.M., Krzewinska, M., Eriksson, G., Fraser, M., Edlund, H., et al. (2018). Population genomics of Mesolithic Scandinavia: Investigating early postglacial migration routes and high latitude adaptation. PLoS Biol. 16, e2003703. 117. Mittnik, A., Wang, C.-C., Pfrengle, S., Daubaras, M., Zarin‚a, G., Hallgren, F., Allmae, R., Khartanovich, V., Moiseyev, V., To € ˜ rv, M., et al. (2018). The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442. 118. van den Brink, E.C.M., Beeri, R., Kirzner, D., Bron, E., Cohen Weinberger, A., Kamaisky, E., Gonen, T., Gershuny, L., Nagar, Y., Ben Tor, D., et al. (2017). A Late Bronze Age II clay coffin from Tel Shaddud in the Central Jezreel Valley, Israel: context and historical implications. Levant 49, 105–135. 119. Valdiosera, C., Gu¨ nther, T., Vera-Rodrı´guez, J.C., Uren˜ a, I., Iriarte, E., Rodrı´guez-Varela, R., Simo˜ es, L.G., Martı´nez-Sa´ nchez, R.M., Svensson, E.M., Malmstro¨ m, H., et al. (2018). Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl. Acad. Sci. USA 115, 3428–3433. 120. Fregel, R., Mendez, F.L., Bokbot, Y., Martı ´n-Socas, D., Camalich Massieu, M.D., Santana, J., Morales, J., A´ vila-Arcos, M.C., Underhill, P.A., Shapiro, B., et al. (2018). Ancient genomes from North Africa evi dence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl. Acad. Sci. USA 115, 6774–6779. 121. Jones, E.R., Gonzalez-Fortes, G., Connell, S., Siska, V., Eriksson, A., Martiniano, R., et al. (2015). Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6. 122. Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., and Reich, D. (2012). Ancient admixture in human history. Genetics 192, 1065–1093. 23. Busby, G.B.J., Hellenthal, G., Montinaro, F., Tofanelli, S., Bulayeva, K., Rudan, I., et al. (2015). The role of recent admixture in forming the contemporary West Eurasian genomic landscape. Curr. Biol. 25, 2878– 2526. 124. Browning, S.R., Browning, B.L., Zhou, Y., Tucci, S., and Akey, J.M. (2018). Analysis of human sequence data reveals two pulses of archaic Denisovan admixture. Cell 173, 53–61.e9. 125. Gamba, C., Jones, E.R., Teasdale, M.D., McLaughlin, R.L., Gonzalez Fortes, G., Mattiangeli, V., Domboro´ czki, L., Kova } ´ri, I., Pap, I., Anders, A., et al. (2014). Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257. 126. Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., and Durbin, R. (2016). BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data Bioinformatics 32 1749 - 1751; http://hdl.handle.net/2122/14769Test

  7. 7
    مؤتمر

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#

    العلاقة: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium; http://hdl.handle.net/2122/14998Test

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Ingegneria Dei Sistemi (IDS) S. p. A, Università di Modena e Reggio Emilia

    العلاقة: Remote Sensing; /12 (2020); http://hdl.handle.net/2122/13680Test

  10. 10
    دورية أكاديمية