يعرض 1 - 10 نتائج من 42 نتيجة بحث عن '"Nardone A."', وقت الاستعلام: 0.66s تنقيح النتائج
  1. 1
    مؤتمر

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia

    مصطلحات موضوعية: Ischia island, landslide

    الوصف: Lahars, landslides and debris flows are rapid natural phenomena that can heavily impact on and modify the environment, not only that from which they are triggered but also the one in which they propagate or leave deposits. In particular, lahars can reach significant runout distances from source areas (e.g., several km) and this can mainly depend, among other factors, on the morphology experienced by such propagation. There are cases in the recent history of natural occurrences in which lahars impacted catastrophically on rural and urban settings, such as for example at Nevado del Ruiz volcano (Colombia) in 1985 causing the death of thousands of people living around there. A more recent event occurred on November 26, 2022 at Ischia island (Italy), which is an active volcano particularly subjected to the recurrence of these phenomena. In this case, the emplacement of some lahars caused the death of a few tens of people and the damaging of tens of building, besides the direct impact on local agriculture and tourism. In the nearby Neapolitan volcanic area, several other lahar events occurred in the historical past, not only during but also after or well after explosive eruptions, as the evidence that these phenomena are still to be considered as complex and often unpredictable extreme natural events, also exacerbated by the climate changes, but also that they have some recurrence that cannot be neglected. Such kind of recurrence is mainly related to the local weather, which can even affect the intrinsic behavior of the flows that detach from the source areas and invade the territory. On the other hand, this is not a strictly statistical issue, as there are instrumental measurements that support the fact that heavy rains can exacerbate a landscape already prone to sliding, avalanching, and other catastrophic phenomena. For this, the November 26, 2022 Ischia case study was chosen with the goal of reconstructing the physical features that led to the lahar generation and invasion, which is something that might occur in ...

    العلاقة: EGU General Assembly 2024; http://hdl.handle.net/2122/17178Test

  2. 2
    دورية أكاديمية

    المساهمون: Dipartimento di Scienze Biologiche, Geologiche ed Ambientali – Sezione di Scienze della Terra, Università degli Studi di Catania, 95127 Catania, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, Seismology-Gravimetry, Royal Observatory of Belgium, 1180 Brussels, Belgium, Institute for the study of anthropic impacts and sustainability in the marine environment, National Research Council (IAS-CNR), 00185 Roma, Italy, Dipartimento di Ingegneria, Università degli Studi di Palermo, Bd. 8, 90128 Palermo, Italy, Department of Geosciences, University of Malta, MSD 2080 Msida, Malta, Italian Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 48, 00144 Rome, Italy, Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy

    الوصف: In this work, we study a Mediterranean cyclone, Helios, which took place during 9–11 February 2023 in the southeastern part of Sicily and Malta, by a multiparametric approach combining microseism results with sea state and meteorological data provided by wavemeter buoy, HF radar, hindcast maps and satellite SEVIRI images. The sub-tropical system Helios caused heavy rainfall, strong wind gusts and violent storm surges with significant wave heights greater than 5 m. We deal with the relationships between such a system and the features of microseism (the most continuous and ubiquitous seismic signal on Earth) in terms of spectral content, space–time variation of the amplitude and source locations tracked by means of two methods (amplitude-based grid search and array techniques). By comparing the location of the microseism sources and the area affected by significant storm surges derived from sea state data, we note that the microseism location results are in agreement with the real position of the storm surges. In addition, we are able to obtain the seismic signature of Helios using a method that exploits the coherence of continuous seismic noise. Hence, we show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena. ; Published ; 1-20 ; OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa ; JCR Journal

    العلاقة: Ocean Science (OS); /20 (2024); http://hdl.handle.net/2122/16812Test

  3. 3
    مؤتمر

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    الوصف: Mefite d’Ansanto (Italy) is the largest non-volcanic CO2 emission field on the Earth. The isotopic signature of the CO2 testifies a deep origin of the gases emitted at this site, whose source is probably the mantle wedge beneath the Apennines along the Tyrrhenian side (Chiodini et al., 2010). Mefite is located between the Sannio and the Irpinia seismogenic regions, that are considered among the most active areas of the southern Apennines. The emission site falls at the northern tip of the Irpinia fault system that is associated with the destructive MS = 6.9, 1980 Irpinia earthquake. The gas leakage from this zone is linked to active faulting that characterized the area and determined large historical earthquakes A temporary acquisition survey close to the Mefite emission field was carried out between 8 June and 28 September 2020 by using a seismic array, named Array MEfite (AME), composed of seven short-period stations. We have analyzed the characteristics of the recorded background seismic noise, e.g., spectral properties, energy temporal pattern (RMS) and polarization (Montalbetti et al., 1970), and estimated site effects (Nakamura, 1989; http://www.geopsy.orgTest/). The seismological temporal patterns have been compared with the meteorological parameters, such as temperature and rainfall, to find possible relationships with exogenous factors. We found a well-defined spatial pattern for the spectral components above 5 Hz, which appear clearly linked to the emission field dynamics. On the other hand, the spectral components below 5 Hz result from the overlapping of multiple sources, of both exogenous, such as anthropogenic and meteorological factors, and endogenous nature. Application of the Independent Component Analysis (ICA) technique (Hyvärinen et al., 2001) contributed to discriminate between natural and anthropogenic sources. ; Published ; Vienna, Austria ; 3T. Fisica dei terremoti e Sorgente Sismica

    العلاقة: EGU General Assembly 2023; Chiodini, G., D. Granieri, R. Avino, S. Caliro, A. Costa, C. Minopoli, and G. Vilardo (2010). Non‐volcanic CO2 Earth degassing: Case of Mefite d’Ansanto (southern Apennines), Italy, Geophys. Res. Lett. 37, L11303, doi:10.1029/2010GL042858. Hyvärinen, A., Karhunen, J. & Oja, E. (2001). Independent Component Analysis. Wiley, New York, Montalbetti, J. R., Kanasevich, E. R. (1970): Enhancement of teleseismic body phase with a polarization filter. Geophys. J. Int. 21 (2), 119–129. Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Railway Technical Research Institute, Quarterly Reports, 30 (1), 25-33.; http://hdl.handle.net/2122/16318Test

  4. 4
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia

    الوصف: A passive seismic experiment is carried out at the non-volcanic highly degassing site of Mefite d'Ansanto located at the northern tip of the Irpinia region (southern Italy), where the 1980 MS 6.9 destructive earthquake occurred. Between 2020 and 2021, background seismic noise was recorded by deploying a broadband seismic station and a seismic array composed of seven 1 Hz three-component sensors. Using two different array configurations, we were allowed to explore in detail the 1-20 Hz frequency band of the seismic noise wavefield as well as Rayleigh wave phase velocities in the 400-800 m/s range. Spectral analyses and array techniques were applied to one year of data showing that the frequency content of the signal is very stable in time. High frequency peaks are likely linked to the emission source, whereas at low frequencies seismic noise is clearly correlated to meteorological parameters. The results of this study show that small aperture seismic arrays probe the subsurface of tectonic CO2-rich emission areas and contribute to the understanding of the link between fluid circulation and seismogenesis in seismically active regions. ; Published ; 1630 ; 1T. Struttura della Terra ; JCR Journal

    العلاقة: Sensors; 3/23 (2023); http://hdl.handle.net/2122/16253Test

  5. 5
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Dipartimento di Scienze Della Terra, dell’Ambiente e delle Risorse, Università di Napoli Federico II, 80126 Naples, Italy, Dipartimento di Fisica, Università della Calabria, 87036 Rende, Italy

    مصطلحات موضوعية: 04.06. Seismology

    الوصف: Mt. Vesuvius is a high-hazard active volcano surrounded by a densely populated area. Since human activities generate high levels of seismic noise, recognizing low-amplitude seismic events in the signals recorded by the local seismic monitoring network operating at Vesuvius is very difficult. Here, we describe an automatic procedure applied to continuous data with the aim of finding low-amplitude–low-frequency events hidden in the recorded signals. The methodology is based on the computation of two spectral parameters, central frequency Ω and shape factor ẟ, at selected sites, and the coherence of the seismic signal among different sites. The proposed procedure is applied to 28 months of recordings from 2019 to 2021, tuning the search parameters in order to find low-frequency signals similar to those occasionally observed in the past at the same volcano. The results allowed us to identify 80 seismic events that have the spectral features of low-frequency earthquakes or tremor. Among these, 12 events characterized by sufficiently high signal-to-noise ratio have been classified as deep low-frequency earthquakes, most of which are not reported in the catalog. The remaining events (more than 60) are characterized by similar spectral features but with an extremely low amplitude that prevents any reliable location of the source and definitive classification. The results of this work demonstrate that the low-frequency endogenous activity at Mt. Vesuvius volcano is more frequent that previously thought. ; The dataset used in this paper was collected by mobile and permanent seismic networks, as carried out within the framework of the Agreement (Annex A) between the Italian Civil Protection Department (DPC) and INGV. ; Published ; 194 ; 2V. Struttura e sistema di alimentazione dei vulcani ; JCR Journal

    العلاقة: Applied Sciences; /13 (2023); http://hdl.handle.net/2122/16090Test

  6. 6
    تقرير

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Irpinia, Grottaminarda, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia

    الوصف: Il giorno 9 novembre 2022, alle 06:07:24 UTC (07:07:24 ora locale) un terremoto di magnitudo momento (MW) pari a 5.5 ha interessato la Costa Marchigiana Pesarese (Pesaro Urbino). A causa della magnitudo del mainshock e del livello di danneggiamento riscontrato, l’INGV ha attivato il gruppo operativo EMERSITO (http://emersitoweb.rm.ingv.it/index.php/itTest/), il cui obiettivo è di svolgere e coordinare le campagne di monitoraggio per studi di effetti di sito e di microzonazione sismica. Il gruppo operativo ha provveduto all’installazione di una rete sismica temporanea nel territorio del comune di Ancona; molte delle stazioni sismiche sono state installate in corrispondenza di edifici pubblici (scuole, Tribunale, Marina Militare, strutture religiose), grazie alla collaborazione con la sede INGV di Ancona, con la Protezione Civile Regione Marche, la Marina militare e la Capitaneria di Porto. Nel presente Report vengono brevemente riassunte le attività già svolte (si vedano i Report precedenti), discusse le analisi dei dati raccolti e mostrati alcuni risultati preliminari riguardanti la rete sismica temporanea. Sono state effettuate le seguente analisi preliminari: qualità delle registrazioni; rapporti spettrali su rumore sismico ambientale e su una selezione di terremoti registrati; analisi della dipendenza dei risultati dei rapporti spettrali dalla direzione del moto sismico (polarizzazione del segnale); calcolo dei meccanismi focali su alcuni eventi selezionati. Infine è stato prodotto un modello geologico semplificato, inclusivo delle informazioni derivanti dalle indagini geologiche e geofisiche preesistenti, che fornisce una chiave interpretativa dei risultati ottenuti. ; Istituto Nazionale di Geofisica e Vulcanologia ; Unpublished ; 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto

    العلاقة: Accaino, Flavio, et al. "Seismic imaging of the shallow and deep structures in the Ancona landslide area." Italian Journal of Geosciences 139.1 (2020): 118-130. Akazawa T. (2004), A technique for automatic detection of onset time of P-and S-Phases in strong motion records, 13th World Conference on Earthquake Engineering. Albarello D., Tiberi P. (2022). La microzonazione sismica delle Marche. 10 anni di attività. Regione Marche. ISBN 978-88-95554-40-2 Bally A.W., Burbi L., Cooper C., Ghelardoni R. (1986). Balanced sections and seismic reflection profiles across the Central Apennines. Memorie della Società Geologica Italiana, 35: 237-310. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J. (May/June 2010), ObsPy: A Python Toolbox for Seismology, Seismological Research Letters, 81 (3), 530-533. Burjanek, J., Stamm, G., Poggi, V., Moore, J.R. & Fäh, D., 2010. Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int., 180, 820– 828. Calza W., Marcellini A., Rampoldi R., Rossi B., Stucchi M., 1981b. Risultati e problematiche aperte dall’indagine di microzonazione di Ancona. Rend. Soc. Geol. It., 4, 659-665. Carta Geologica Regionale, edizione CTR, sezione 282150 Ancona, scala 1:10.000, Coordinatori scientifici Cello G., Tondi E Carta Geologica Regionale, edizione CTR, sezione 293030 Monte dei Corvi, scala 1:10.000, Coordinatore scientifico M. Sarti Castro R.R., L. Colavitti, C.A. Vidales‐Basurto, F. Pacor, S. Sgobba, G. Lanzano (2022). Near‐Source Attenuation and Spatial Variability of the Spectral Decay Parameter Kappa in Central Italy. Seismological Research Letters 2022; 93 (4): 2299–2310. doi: https://doi.org/10.1785/0220210276Test Cello G., Coppola L. (1984) - Assetto geologico-strutturale dell’area anconetana e sua evoluzione Plio-Quaternaria. Bollettino della Società Geologica Italiana, 103: 97-109 Coltorti M., Dramis F., Gentili B., Pambianchi G., Crescenti and Sorriso-Valvo M., 1985: The december 1982 Ancona landslide: a case of deep-seated gravitational slope deformation evolving at unsteady rate. Zeitschrift fur Geomorphologie, N.F., 29(3), 335-345 Console R., Peronaci F., Sonaglia A., 1973. Relazione sui fenomeni sismici dell’Anconetano. Annali di Geofisica, 26 suppl. Contratto tra il comune di Ancona area lavori pubblici U.O Geologia e l’Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. Grande frana di Ancona Indagini Geofisiche e Geognostiche per l’individuazione del piede della frana di Ancona. Coppola L.(1987) La deformazione mesozoico-quaternaria nel bacino marchigiano esterno. Boll. Soc. Geol. It.,106, 113-140. Crescenti, U., ed. 1986: La grande frana di Ancona del 13 dicembre 1982. Studi Geologici Camerti, vol. spec., 146 p. Favali, P., Frugoni, F., Monna, D., Rainone, L., Signanini, P., Smeriglio, G., 1995. The 1930 earthquake and the town of Senigallia (Central Italy): an approach to seismic risk evaluation. In: Boschi, E., et al. (Eds.), Earthquakes in the Past: Multidisciplinary Approaches, Annali di Geofisica, vol. XXXVIII, pp. 679–689, 5–6. Gallipoli, M. R., and M. Mucciarelli. "Comparison of site classification from VS 30, VS 10, and HVSR in Italy." Bulletin of the Seismological Society of America 99.1 (2009): 340-35 Jurkevics, A. (1988). Polarization analysis of three-component array data, Bulletin of the Seismological Society of America, 78 (5), 1725-1743. Konno, K. & Ohmachi T. Ground-Motion Characteristic Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bull Seism Soc Am, 88 (1998), 228-241 Istituto Nazionale di Geofisica e Vulcanologia (INGV). Rete Sismica Nazionale (RSN). Istituto Nazionale di Geofisica e Vulcanologia (INGV). (2005, December 13). https://doi.org/10.13127/SD/X0FXNH7QFYTest Marcellini A., Petrini V., Stucchi M., 1982. Some aspects of the microzonation of Ancona. Proc. Third International Earthquake Microzonation Conference, June 28/July 1 1982, Seattle, pp. 1475-1488 McNamara, D. E. & Buland, R. P. Ambient Noise Levels in the Continental United States. Bull. Seismol. Soc. Am. 94, 1517–1527, https://doi.org/10.1785/012003001Test (2004). Microzonazione Sismica-Carta delle MOPS, scala 1:10.000, Regione Marche - Comune di Ancona - Annualità 2015, II Livello Morasca, P., D’Amico, M., Sgobba, S., Lanzano, G., Colavitti, L., Pacor, F., and Spallarossa, D., 2022. Empirical correlations between a FAS non-ergodic ground motion model and a GIT derived model for Central Italy, Geophysical Journal International, accepted Mucciarelli, M., D. Albarello, and M. Stucchi. "Sensitivity of seismic hazard estimates to the use of historical site data." Earthquake Hazard and Risk. Springer, Dordrecht, 1996. 141-151 Note Illustrative della Carta Geologica d’Italia alla scala 1:50.000 foglio 282 Ancona (2011), Coordinatori Cello. G., Tondi E., ISPRA Pessina, V., et al. "Seismic risk assessment of Italian seaports: the case of Ancona (Italy)" 14th World Conference on Earthquake Engineering (14 WCEE). 2008 Peterson, J. Observations and modeling of seismic background noise. U.S. Geol. Surv. Open-File Rept. 93–322 (1993) Pinnegar C. R., Polarization analysis and polarization filtering of three-component signals with the time—frequency S transform, Geophysical Journal International, Volume 165, Issue 2, May 2006, Pages 596–606, https://doi.org/10.1111/j.1365-246X.2006.02937.xTest Reasenberg, P. A., and Oppenheimer, D.“FPFIT, FPPLOT and FPPAGE: FORTRAN Computer Programs for Calculating and Displaying Earthquake Fault-Plane Solutions''. US Geological Survey Open-File Report 85-739, USGS, 109, (1985) Stucchi, E., F. Zgur, and L. Baradello. "Seismic land‐marine acquisition survey on the Great Ancona Landslide." Near Surface Geophysics 3.4 (2005): 235-243 Stucchi, Eusebio, and Alfredo Mazzotti. "2D seismic exploration of the Ancona landslide (Adriatic Coast, Italy)." Geophysics 74.5 (2009): B139-B151 Vassallo M., G. Riccio, A. Mercuri, G. Cultrera, G. Di Giulio; HV Noise and Earthquake Automatic Analysis (HVNEA). Seismological Research Letters 2022; doi: https://doi.org/10.1785/0220220115Test Vidale, J. E., Complex polarization analysis of particle motion, Bulletin of the Seismological Society of America, 76, 1986 (5), 1393-1405.; http://hdl.handle.net/2122/16014Test

  7. 7
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#

    مصطلحات موضوعية: Inverse theory, Seismic noise, Volcano seismology, Calderas

    الوصف: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved. ; Following the Mw 3.9 earthquake that occurred in the Ischia island (Naples, southern Italy) on 21 August 2017, the local monitoring seismic network was significantly improved in terms of both number of stations and instrumentation performance. Due to the huge amount of collected seismic ambient noise data, in this paper we present a first 3-D shear wave velocity model of the island retrieved from the inversion of horizontal-to-vertical spectral ratio curves by fixing the shear wave velocities (Vs) and modifying the thicknesses to get the corresponding 1-D Vs models. We are confident about the robustness of the attained models since the inversion process provided a good convergence towards the best-fitting solutions. Then, a first 3-D velocity model was obtained by contouring all the 1-D models obtained for the selected seismic stations to highlight possible lateral variations of the layer thicknesses and to reconstruct the morphology of the deeper interface characterized by a high-impedance contrast. A good correspondence between the 3-D Vs model and the geological features of the island was observed, especially in the northern sector where most of the stations are installed. In particular, the top of the high-impedance contrast interface appears deeper in the northern coastal areas and shallower in the central sector. This result agrees with the structural settings of the island likely due to the resurgence of Mount Epomeo. ; Published ; 2056–2072 ; 2V. Struttura e sistema di alimentazione dei vulcani ; JCR Journal

    العلاقة: Geophysical Journal International; /230 (2022); http://hdl.handle.net/2122/16289Test

  8. 8
    دورية أكاديمية

    المساهمون: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia

    الوصف: Sea waves constitute a natural phenomenon with a great impact on human activities, and their monitoring is essential for meteorology, coastal safety, navigation, and renewable energy from the sea. Therefore, the main measurement techniques for their monitoring are here reviewed, including buoys, satellite observation, coastal radars, shipboard observation, and microseism analysis. For each technique, the measurement principle is briefly recalled, the degree of development is outlined, and trends are prospected. The complementarity of such techniques is also highlighted, and the need for further integration in local and global networks is stressed. ; Published ; 78 ; 4A. Oceanografia e clima ; 7A. Geofisica per il monitoraggio ambientale ; JCR Journal

    العلاقة: Sensors; /22 (2022); http://hdl.handle.net/2122/15881Test

  9. 9
    دورية أكاديمية

    المساهمون: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia

    الوصف: Microseism is the continuous background seismic signal caused by the interaction between the atmosphere, the hydrosphere and the solid Earth. Several studies have dealt with the relationship between microseisms and the tropical cyclones, but none focused on the small-scale tropical cyclones that occur in the Mediterranean Sea, called Medicanes. In this work, we analysed the Medicane Apollo which impacted the eastern part of Sicily during the period 25 October-5 November 2021 causing heavy rainfall, strong wind gusts and violent sea waves. We investigated the microseism accompanying this extreme Mediterranean weather event, and its relationship with the sea state retrieved from hindcast maps and wave buoys. The spectral and amplitude analyses showed the space-time variation of the microseism amplitude. In addition, we tracked the position of Apollo during the time using two different methods: (i) a grid search method; (ii) an array analysis. We obtained a good match between the real position of Apollo and the location constraint by both methods. This work shows that it is possible to extract information on Medicanes from microseisms for both research and monitoring purposes. ; Published ; 21363 ; 4A. Oceanografia e clima ; 7A. Geofisica per il monitoraggio ambientale ; JCR Journal

    العلاقة: Scientific Reports; /12 (2022); http://hdl.handle.net/2122/15878Test

  10. 10
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    الوصف: An accurate survey of old and new datasets allowed us to probe the nature and role of fluids in the seismogenic processes of the Apennines mountain range in Italy. New datasets include the 1985–2021 instrumented seismicity catalog, the computed seismogenic thickness, and geodetic velocities and strains, whereas data from the literature comprise focal mechanism solutions, CO2 release, Moho depth, tomographic seismic velocities, heat flow and Bouguer gravity anomalies. Most of the inspected datasets highlight differences between the western and eastern domains of the Apennines, while the transition zone is marked by high geodetic strain, prevailing uplift at the surface and high seismic release, and spatially corresponds with the overlapping Tyrrhenian and Adriatic Mohos. Published tomographic models suggest the presence of a large hot asthenospheric mantle wedge which intrudes beneath the western side of the Apennines and disappears at the southern tip of the southern Apennines. This wedge modulates the thermal structure and rheology of the overlying crust as well as the melting of carbonate-rich sediments of the subducting Adriatic lithosphere. As a result, CO2-rich fluids of mantle-origin have been recognized in association with the occurrence of destructive seismic sequences in the Apennines. The stretched western domain of the Apennines is characterized by a broad pattern of emissions from CO2-rich fluids that vanishes beneath the axial belt of the chain, where fluids are instead trapped within crustal overpressurized reservoirs, favoring their involvement in the evolution of destructive seismic sequences in that region. In the Apennines, areas with high mantle He are associated with different degrees of metasomatism of the mantle wedge from north to south. Beneath the chain, the thickness and permeability of the crust control the formation of overpressurized fluid zones at depth and the seismicity is favored by extensional faults that act as high permeability pathways. This multidisciplinary study aims to ...

    العلاقة: Earth-Science Reviews; /234 (2022); http://hdl.handle.net/2122/15774Test