Harbour water managment for port structures and sea bottom design, coast proximity navigation managment, water quality control.

التفاصيل البيبلوغرافية
العنوان: Harbour water managment for port structures and sea bottom design, coast proximity navigation managment, water quality control.
المؤلفون: Faggioni, O., Soldani, M., Piangiamore, G. L., Ferrante, A., Bencivenga, M., Arena, G., Nardone, G.
المساهمون: Faggioni, O., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Soldani, M., Piangiamore, G. L., Ferrante, A., Consiglio Superiore dei Lavori Pubblici, via Nomentana 2, Roma, 00161, Italy, Bencivenga, M., Servizio Mareografico, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Curtatone 3, Roma, 00185, Italy, Arena, G., Nardone, G.
بيانات النشر: PIANC
سنة النشر: 2008
المجموعة: Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
مصطلحات موضوعية: monitoraggio ambientale, mareografia, monitoraggio portuale, 03. Hydrosphere::03.01. General::03.01.02. Equatorial and regional oceanography, 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis, 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques, 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations, 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
الوصف: Tide is a sea level up-down water motion basically depending on three different phenomena: the Earth-Moon-Sun gravitational relationship, the water surface fluid reaction to atmospheric meteorological dynamic action and the Newtonian vertical adjustment of the sea surface due to atmospheric pressure variations. The first tide component (astro-tide) is periodic and well known in all points of the Earth surface; the second one is directly related to the meteorological phenomenon and then it is foreseeable; the Newtonian component, on the contrary, is not readily predictable by a general hydrostatic law, because the factor “J” that represents the Newtonian transfer (from the atmospheric weight to the consequent sea level) is variable in each harbour area. A statistical study and the related numerical data interpretation of the measurements performed in the Ports of Genoa, La Spezia, Marina di Carrara, Livorno, Piombino, Civitavecchia and Ravenna (belonging to the Italian Newtonian Meteotide Network) show port values of Jph (from 1.4-1.6 cm/hPa to > 2 cm/hPa, on the contrary of the off-shore areas where Jph is about 1 cm/hPa). This phenomenon (hydrobarometric tide wave) produces even double values of harbour sea level fluctuations amplitude in comparison to astronomic tide sea level oscillations, and is characterized by a wavelength from 8-12 h to same days and a 10-25 days/year as mean temporal occurrence in the Northern Tyrrhenian Sea. This is the most relevant ordinary risk factor for our ports activity and structures design. The present note shows a quantitative method to define the values of Jph factor for ports and its use in the Harbour WaterSide Management (HWSM) based on the joined use of barometers, hydrometers and clocks, the preliminary results related to the use of the gravimeters as hydrobarometric predictor in La Spezia Port and two examples of use of Jph factor in the port management: refloating of a landing ship and optimisation of a dock performance as pleasure boats mooring. ; Published ...
نوع الوثيقة: conference object
اللغة: English
العلاقة: Proceedings of Mediterranean Days of Coastal and Port Engineering; Allen, J.S., D.W. Denbo, 1984. Statistical characteristics of the large-scale response of coastal sea level to atmospheric forcing. J. Phys. Oceanogr. 14:1079-1094. Crépon, M., 1965. Influence de la pression atmosphérique sur le niveau moyen de la Méditerranée Occidentale et sur le flux à travers le Détroit de Gibraltar. Cahiers Océanographiques 17:15-32. El-Gindy, A.A., F.M. Eid, 1990. Long- term variations of monthly mean sea level and its relation to atmospheric pressure in the Mediterranean Sea. Int. Hydrogr. Rev. 17(1):147-159. Faggioni, O., G. Arena, M. Bencivenga, G. Bianco, R. Bozzano, G. Canepa, P. Lusiani, G. Nardone, G.L. Piangiamore, M. Soldani, L. Surace, G. Venzano, 2006. The Newtonian approach in meteorological tide waves forecasting: preliminary observations in the East Ligurian harbours. Annals of Geophysics 49(6):1177-1187. Garrett, C., F. Majaess, 1984. Non-isostatic response of sea-level to atmospheric pressure in the Eastern Mediterranean. J. Phys. Oceanogr. 14:656-665. Garrett, C., B. Toulany, 1982. Sea level variability due to meteorological forcing in the Northeast Gulf of St. Lawrence. J. Geophys. Res. 87(C3):1968–1978. Le Traon, P.-Y., P. Gauzelin, 1997. Response of the Mediterranean mean sea level to atmospheric pressure forcing, J. Geophys. Res. 102(C1):973–984. Mosetti, F., 1969. Oscillazioni del livello medio marino a Venezia in rapporto con le oscillazioni di pressione atmosferica. Boll. Geof. Teor. ed Appl. 11(43-44):264-277. Stocchino, C., V. Scotto, 1970. Il livello marino e la pressione atmosferica nel porto di Genova. Bull. Inst. Océanogr. Monaco 69(1399):1-10. Tsimplis, M.N. 1995. The response of sea level to atmospheric forcing in the Mediterranean. J. Coastal Res. 11(4):1309-1321. Tsimplis, M.N., G.N. Vlahakis, 1994. Meteorological forcing and sea level variability in the Aegean Sea. J. Geophys. Res. 99(C5):9879-9890.; http://hdl.handle.net/2122/5339Test
الإتاحة: http://hdl.handle.net/2122/5339Test
حقوق: open
رقم الانضمام: edsbas.7029B182
قاعدة البيانات: BASE