Combining model and geostationary satellite data to reconstruct the hourly SST field over the Mediterranean Sea

التفاصيل البيبلوغرافية
العنوان: Combining model and geostationary satellite data to reconstruct the hourly SST field over the Mediterranean Sea
المؤلفون: Marullo, S., Santoleri, R., Ciani, D., Le Borgne, P., Pere, S., Pinardi, N., Tonani, M., Nardone, G.
المساهمون: Marullo, S., Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, ENEA, Santoleri, R., CNR Istituto di Scienze dell'Atmosfera e del Clima, Ciani, D., Le Borgne, P., Meteo-France/DP/CMS, Pere, S., Pinardi, N., Dipartimento di Scienze Ambientali, Universita' di Bologna, Tonani, M., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Nardone, G., Istituto Superiore per la Protezione e la Ricerca Ambientale
سنة النشر: 2012
المجموعة: Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
مصطلحات موضوعية: SST, Mediterranean Sea, Diurnal Cycle, 03. Hydrosphere::03.03. Physical::03.03.04. Upper ocean and mixed layer processes
الوصف: This work focuses on the Sea Surface Temperature diurnal cycle reconstruction over the Mediterranean Sea by combining numerical model analyses and geostationary satellite measurements. Our approach is to take advantage of geostationary satellite observations as the diurnal signal source to produce gap‐free optimally interpolated (OI) hourly SST fields using model analyses as first guess. The work is focused on summer 2011 including all the data and model output from June 1st to August 31st 2011. The OI interpolation estimate, the model first guess (provided by an operational forecasting model) and the SEVIRI data (provided by O&SI SAF) were evaluated using drifter and mooring data as a references. Special attention was devoted to the analysis of Diurnal Warming (DW) events that were particularly frequent during this period. Results suggest the following: 1) the model reproduces quite well the Mediterranean SST diurnal cycle with the exclusion of intense DW events but the amplitude of the model cycle is often less intense than the corresponding SEVIRI and drifter observations, due to the different thickness of the surface ocean layer they represent. Time shifts between model and data warming/cooling phases of the day are also discussed. 2) The Diurnal OI SST field (DOISST), resulting from the blending of model and SEVIRI data via optimal interpolation, well reproduces the diurnal cycle (including DW events) leaving substantially unchanged the statistics of the difference between SEVIRI and drifter measurements also in data void positions where the interpolation operates. ; This research was supported by the MyOcean-2 project of the European Union 7th Framework Programme. The data from the EUMETSAT Satellite Application Facility on Ocean and Sea Ice are accessible through the SAF’s homepage: http://www.osi-saf.orgTest ; Submitted ; 40 ; 3.7. Dinamica del clima e dell'oceano ; JCR Journal ; restricted
نوع الوثيقة: manuscript
اللغة: English
العلاقة: Remote sensing of the Environmnet; Anding, D, and R. Kauth (1970), Estimation of sea surface temperature from space. Remote Sensing of the Environment 1: 217-220. Bernie, D., E. Guilyardi, G. Madec, J. Slingo, and S. Woolnough (2007), Impact of resolving the diurnal cycle in an ocean‐atmosphere GCM: Part 1. A diurnally forced OGCM, Clim. Dyn., 29(6), 575–590. Bernie, D., E. Guilyardi, G. Madec, J. Slingo, S. Woolnough, and J. Cole (2008), Impact of resolving the diurnal cycle in an ocean‐atmosphere GCM: Part 2. A diurnally coupled OGCM, Clim. Dyn., 31(7–8), 909– 925. Bignami F., S. Marullo, R. Santoleri, M.E. Schiano (1995), Longwave radiation budget in The Mediterranean Sea. J. Geophys. Res., 100, NO. C2, 2501-2514 . Böhm E., S. Marullo, R. Santoleri: "AVHRR visible-IR detection of diurnal warming events in the western Mediterranean Sea" Int. J. Remote Sensing, vol.12, no.4, 695-701, 1991 Bretherton, F. P., R. E. Davis, and C. B. Fandry (1976), A technique for objective analysis and design of oceanographic experiments applied to MODE‐73, Deep Sea Res., 23, 559– 582. Buongiorno Nardelli B., Marullo S. and R Santoleri, 2005. Diurnal variations in AVHRR SST fields: a strategy for removing warm layer effects from daily images., Rem. Sens. Env., 95, 1, 47-56, doi:10.1016/j.rse.2004.12.005. Buongiorno Nardelli, B., E. Böhm, C. Tronconi, and R. Santoleri (2007), Report on the merging of AVHRR, AATSR and MODIS SST products in the Mediterranean Sea, Contract IP3‐CT‐2003–502885, Mar. Environ. and Security for the Eur. Area Integrated Proj., Plouzané, France. Buongiorno Nardelli 2012 21 Buongiorn Nardelli, B., C. Tronconi, A. Pisano, R. Santoleri (2012)m High and Ultra High resolution processing of satellite Sea Surface Temperature data over the Southern European Seas in the framework of MyOcean project. Remote Sensing of the Environment, in press. Chen, S. S. and R. A. Houze, Jr: Diurnal variation and life-cycle of deep convective systems over the tropical Pa- cific warm pool, Q. J. R. Meteorol. Soc., 123, 357-388,1997 Derrien M. and H. Le Gléau (2005), MSG/SEVIRI cloud mask and type from SAFNWC , International Journal of Remote Sensing, 26: 21, 4707-4732 Dobricic, S., N. Pinardi, M. Adani, M. Tonani, C. Fratianni, A. Bonazzi and V. Fernandez, 2007. Daily oceanographic analyses by the Mediterranean basin scale assimilation system, Ocean Sciences, 3, 149-157. Embury, O., C. J. Merchant and G. K. Corlett (2012), A Reprocessing for Climate of Sea Surface Temperature from the Along-Track Scanning Radiometers: Initial validation, accounting for skin and diurnal variability, Rem. Sens. Env., pp62 - 78. DOI:10.1016/j.rse.2011.02.028 EUMETSAT (2011). Geostationary Sea Surface Temperature Product User Manual. SAF/OSI/CDOP/M-F/TEC/MA/181, http://www.osi-saf.orgTest François, C., Brisson, A., Le Borgne, P. and A. Marsouin (2002). Definition of a radiosounding database for sea surface brightness temperature simulations: Application to sea surface temperature retrieval algorithm determination. Remote Sensing of Environment, 81, 309−326 Gandin, L. S. (1965), Objective Analysis of Meteorological Fields, 242 pp., Isr. Program for Sci. Transl., Jerusalem. 22 Gentemann, C. L., P. J. Minnett, P. Le Borgne, and C. J. Merchant (2008), Multi‐satellite measurements of large diurnal warming events, Geophys. Res. Lett., 35, L22602, doi:10.1029/2008GL035730. Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/ 2000RG000092. GHRSST Science Team (2010). The recommended GHRSST Data Specifications (GDS) Revision 2.0 Technical Specifications, available from the GHRSST International Project Office, htto://www.ghrsst.org, pp. 120 Intergovernmental Oceanographic Commission (1999), Global physical ocean observations for GOOS/GCOS: An action plan for existing bodies and mechanisms, GOOS Rep. 66, GCOS Rep. 51, IOC/INF‐1127, UNESCO, Paris, France. Jessup, A., and R. Branch (2008), Integrated ocean skin and bulk temperature using the calibrated infrared in situ measurement system (CIRIMS) and through‐hull ports, J. Atmos. Oceanic Technol., 25, 579–597, doi:10.1175/2007JTECHO479.1. Kennedy, J. J., P. Brohan, and S. F. B. Tett (2007), A global climatology of the diurnal variations in sea‐surface temperature and implications for MSU temperature trends, Geophys. Res. Lett., 34, L05712, doi:10.1029/2006GL028920. Le Borgne, P., H. Roquet, & C.J. Merchant (2011). Estimation of sea surface temperature from the Spinning Enhanced Visible and Infrared Imager, improved using numerical weather prediction. Remote Sensing of Environment, 115, 55–65. Le Borgne, P., Legendre, G., & Péré S. (2012). Comparison of MSG/SEVIRI and drifting buoy diurnal warming estimates. Remote sensing of Environment, 124, 622-626 23 Marullo, S., B. Buongiorno Nardelli, M. Guarracino, and R. Santoleri (2007), Observing the Mediterranean Sea from space: 21 years of Pathfinder‐ AVHRR sea surface temperatures (1985 to 2005), Re‐analysis and validation, Ocean Sci., 3, 299–310. Marullo, S., R. Santoleri, V. Banzon, R. H. Evans, and M. Guarracino (2010), A diurnal‐cycle resolving sea surface temperature product for the tropical Atlantic, J. Geophys. Res., 115, C05011, doi:10.1029/2009JC005466. J. Merchant, P. Le Borgne (2004). Retrieval of sea surface temperature from space based on modeling of infrared radiative transfer: Capabilities and limitations. Journal of Atmospheric and Oceanic Technology, 22 (11) ,1734–1746 Merchant, C. J., M. J. Filipiak, P. Le Borgne, H. Roquet, E. Autret, J.‐F. Piollé, and S. Lavender (2008), Diurnal warm‐layer events in the western Mediterranean and European shelf seas, Geophys. Res. Lett., 35, L04601, doi:10.1029/2007GL033071. Minnett, P. J. (2003), Radiometric measurements of the sea‐surface skin temperature: The competing roles of the diurnal thermocline and the cool skin, Int. J. Remote Sens., 24(24), 5033–5047, doi:10.1080/ 0143116031000095880. Nyquist, H., "Certain Factors Affecting Telegraph Speed," Bell System Technical Journal, Vol. 3, April 1924, pp. 324-346. Oddo, P., M. Adani, N. Pinardi, C. Fratianni, M. Tonani, D. Pettenuzzo, 2009. A Nested Atlantic-Mediterranean Sea General Circulation Model for Operational Forecasting, Ocean Sci., 5, 461-473. Pettenuzzo, D., W. G. Large, and N. Pinardi, 2010. On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO, Journal of Geophysical Research, 115, C06022, doi:10.1029/2009JC005631. Pinardi N. and G. Coppini, 2010. Operational oceanography in the Mediterranean Sea: the second stage of development, Ocean Sci., 6, 263-267. 24 Prabhakara, C., G. Dalu and V.G. Kunde (1974), Estimation of sea surface temperature from remote sensing in the 11 to 13-um window region. Journal of Geophysical research 79: 5039-5044. Reed, R. K., On estimating insolation over the ocean, J. Phys. Oceanogr., 7, 482– 485, 1977. Reynolds, R. W., T. S. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax (2007), Daily high‐resolution‐blended analyses for sea surface temperature, J. Clim., 20, 5473– 5496, doi:10.1175/2007JCLI1824.1. Santoleri R., S. Marullo, E. Böhm: "An objective analysis scheme for AVHRR imagery" Int. J. Remote Sensing, vol.12, no.4, 681-693, 1991 Sykes, P., J. While, A. Sellar, M. Martin (2011), Diurnal Variability in Sea Surface Temperature: Observation and Model assessment, Met Office Forecasting Research Technical Report 556. Stommel, H. (1969), Observations of the diurnal thermocline, Deep Sea Res. Part I, 16, 269–284. Stommel, H., and A. H. Woodcock (1951), Diurnal heating of the surface of the Gulf of Mexico in the spring of 1942, Eos Trans. AGU, 32(4), 565–571. Stuart-Menteth, A. C., I. S. Robinson and P. G. Challenor: A global study of diurnal warming using satellite-derived sea surface temperature, J. Geophys. Res., 108(C5), 2003 M. Tonani, N. Pinardi, J. Pistoia, S. Dobricic, S. Pensieri, M. de Alfonso, and K. Nittis, 2009. Mediterranean Forecasting System: forecast and analysis assessment through skill scores, Ocean Sci., 5, 649-660. Walton, C. C., Pichel, W.G., Sapper, J.F. & May, D.A.(1998). The development and operational application of nonlinear algorithms for the measurement of sea surface 25 temperatures with the NOAA polar-orbiting environmental satellites, J. Geophysical Research, 103, 27,999–28,012 Webster, P. J., and R. Lukas (1992), TOGA COARE - The coupled ocean and atmosphere response experiment. Bull. Amer. Meteor. Soc., 73, 1377-1416. Webster, P. J., C.A. Clayson, and J.A. Curry, (1996), Clouds, radiation and the diurnal cycle of sea surface temperature in the tropical western pacific. Journal of climate, 9, 1712–1728. Zeng, X. and R.E. Dickinson, 1998: Impact of diurnally-varying skin temperature on surface fluxes over the tropical Pacific. Geophys. Res. Lett., 25, 1411-1414.; http://hdl.handle.net/2122/8437Test
الإتاحة: https://doi.org/10.1016/j.rse.2004.12.005Test
http://hdl.handle.net/2122/8437Test
حقوق: restricted
رقم الانضمام: edsbas.60B452DD
قاعدة البيانات: BASE