رسالة جامعية

Taming the quantum noise : How quantum metrology can expand the reach of gravitational-wave observatories ; Das Quantenrauschen bändigen : Wie Quantenmetrologie die Reichweite von Gravitationswellenobservatorien vergrößern kann

التفاصيل البيبلوغرافية
العنوان: Taming the quantum noise : How quantum metrology can expand the reach of gravitational-wave observatories ; Das Quantenrauschen bändigen : Wie Quantenmetrologie die Reichweite von Gravitationswellenobservatorien vergrößern kann
المؤلفون: Korobko, Mikhail
المساهمون: Schnabel, Roman (Prof. Dr.)
بيانات النشر: Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky
سنة النشر: 2020
المجموعة: E-Dissertationen der Universität Hamburg
مصطلحات موضوعية: Speedmeter, Squeezed light, Quantum metrologie, Quantum optomechanics, Gravitaional-wave detection, 530 Physik, 33.05 Experimentalphysik, 33.18 Optik, 33.23 Quantenphysik, 33.38 Quantenoptik, nichtlineare Optik, Verschränkter Zustand, Quantenzustand, Quantenoptik, Optomechanik, Gravitationswellendetektor, Quantenrauschen, ddc:530
الوصف: The dawn of gravitational-wave astronomy has begun in 2015 with the historic detection of a binary black hole merger. Several more detections followed in the years after. Among them, the detectors observed the inspiral of a neutron star binary. This merger was also observed in a broad spectrum of electromagnetic counterparts. This multi-messenger observation demonstrated that gravitational-wave astronomy is invaluable for understanding the Universe. Current detectors, however, are able to see only a small part of binaries’ inspirals. A typical signal from an inspiral of a binary neutron star appears in the detector at low frequencies a few minutes before the merger. During the inspiral, the frequency of the signal increases, faster for higher frequencies. It quickly passes through the detection band of the observatory. The merger itself and post-merger oscillations often remain inaccessible due to the reduced sensitivity of the detector to high-frequency signals. An increase in the low-frequency sensitivity will allow to detect signals significantly earlier, extracting more information about the binary. This will allow to precisely locate the source on the sky for the follow-up multi-messenger observations. An increase in the high-frequency sensitivity will give a possibility to observe the merger and post-merger signals, gaining insight into the physics of ultra-dense quantum matter. The limitations to the sensitivity arise from quantum nature of light used to sense the displacement of mirrors caused by gravitational waves. At low frequencies, quantum fluctuations in the amplitude of the light field cause random forces on the mirrors, which mask the signal from gravitational waves. At high frequencies, quantum fluctuations in the phase of the light field cause measurement noise on the detectors. The detectors use optical cavities to enhance the signal within the bandwidth of the cavities. At frequencies outside this bandwidth the signal is getting suppressed. Signals from the binary neutron star mergers ...
نوع الوثيقة: doctoral or postdoctoral thesis
اللغة: English
العلاقة: http://nbn-resolving.de/urn:nbn:de:gbv:18-105900Test; https://ediss.sub.uni-hamburg.de/handle/ediss/8460Test
الإتاحة: http://nbn-resolving.de/urn:nbn:de:gbv:18-105900Test
https://ediss.sub.uni-hamburg.de/handle/ediss/8460Test
حقوق: http://purl.org/coar/access_right/c_abf2Test ; info:eu-repo/semantics/openAccess ; No license
رقم الانضمام: edsbas.FCD208E6
قاعدة البيانات: BASE