يعرض 1 - 10 نتائج من 12 نتيجة بحث عن '"ricci curvature"', وقت الاستعلام: 0.90s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: Karmakar, Payel

    وصف الملف: application/pdf

    العلاقة: mr:MR4482315; zbl:Zbl 07584134; reference:[1] Baishya, K. K., Biswas, A.: Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection.Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12 (2019), 233-246. MR 4059157, 10.31926/but.mif.2019.12.61.2.4; reference:[2] Biswas, A., Baishya, K. K.: A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds.Sci. Stud. Res., Ser. Math. Inform. 29 (2019), 59-72. MR 4089056; reference:[3] Blaga, A. M.: Canonical connections on para-Kenmotsu manifolds.Novi Sad J. Math. 45 (2015), 131-142. Zbl 06749324, MR 3432562, 10.30755/NSJOM.2014.050; reference:[4] Chaubey, S. K., Ojha, R. H.: On the $m$-projective curvature tensor of a Kenmotsu manifold.Differ. Geom. Dyn. Syst. 12 (2010), 52-60. Zbl 1200.53028, MR 2606546; reference:[5] Chaubey, S. K., Prakash, S., Nivas, R.: Some properties of $m$-projective curvature tensor in Kenmotsu manifolds.Bull. Math. Anal. Appl. 4 (2012), 48-56. Zbl 1314.53053, MR 2989709; reference:[6] Das, A., Mandal, A.: Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection.Aligarh Bull. Math. 39 (2020), 47-61. MR 4380665; reference:[7] De, U. C., Shaikh, A. A.: Complex Manifolds and Contact Manifolds.Narosa Publishing House, New Delhi (2009). Zbl 1208.53001, MR 2934086; reference:[8] Hamilton, R. S.: Three-manifolds with positive Ricci curvature.J. Differ. Geom. 17 (1982), 255-306. Zbl 0504.53034, MR 0664497, 10.4310/jdg/1214436922; reference:[9] Hamilton, R. S.: The Ricci flow on surfaces.Mathematics and General Relativity Contemporary Mathematics 71. AMS, Providence (1988), 237-262. Zbl 0663.53031, MR 0954419, 10.1090/conm/071; reference:[10] Karmakar, P., Bhattacharyya, A.: Anti-invariant submanifolds of some indefinite almost contact and paracontact manifolds.Bull. Calcutta Math. Soc. 112 (2020), 95-108.; reference:[11] Mandal, A., Das, A.: On $M$-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection.Adv. Math., Sci. J. 9 (2020), 8929-8940. 10.37418/amsj.9.10.115; reference:[12] Mandal, A., Das, A.: Projective curvature tensor with respect to Zamkovoy connection in Lorentzian para-Sasakian manifolds.J. Indones. Math. Soc. 26 (2020), 369-379. Zbl 1454.53017, MR 4188662, 10.22342/jims.26.3.928.369-379; reference:[13] Mandal, A., Das, A.: Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection.Bull. Cal. Math. Soc. 112 (2020), 431-450. MR 2676120; reference:[14] Mandal, A., Das, A.: LP-Sasakian manifolds equipped with Zamkovoy connection and conharmonic curvature tensor.J. Indones. Math. Soc. 27 (2021), 137-149. MR 4294370, 10.22342/jims.27.2.960.137-149; reference:[15] Nagaraja, H. G., Somashekhara, G.: On pseudo projective curvature tensor in Sasakian manifolds.Int. J. Contemp. Math. Sci. 6 (2011), 1319-1328. Zbl 1252.53058, MR 2837958; reference:[16] Narain, D., Prakash, A., Prasad, B.: A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 275-284. Zbl 1199.53040, MR 2562248; reference:[17] Ojha, R. H.: On Sasakian manifold.Kyungpook Math. J. 13 (1973), 211-215. Zbl 0289.53036, MR 0339011; reference:[18] Ojha, R. H.: A note on the $M$-projective curvature tensor.Indian J. Pure Appl. Math. 8 (1977), 1531-1534. Zbl 0426.53022, MR 0548666; reference:[19] Ojha, R. H.: $M$-projectively flat Sasakian manifolds.Indian J. Pure Appl. Math. 17 (1986), 481-484. Zbl 0631.53038, MR 0840755; reference:[20] Pandey, H. B., Kumar, A.: Anti-invariant submanifolds of almost para-contact manifolds.Indian J. Pure Appl. Math. 16 (1985), 586-590. Zbl 0585.53015, MR 0814389; reference:[21] Pokhariyal, G. P., Mishra, R. S.: Curvature tensors and their relativistic significance. II.Yokohama Math. J. 19 (1971), 97-103. Zbl 0229.53026, MR 0426797; reference:[22] Prakasha, D. G., Mirji, K.: On the $M$-projective curvature tensor of a $(k,\mu)$-contact metric manifold.Facta Univ., Ser. Math. Inf. 32 (2017), 117-128. Zbl 07342514, MR 3633228, 10.22190/FUMI1701117P; reference:[23] Prasad, B.: A pseudo projective curvature tensor on a Riemannian manifold.Bull. Calcutta Math. Soc. 94 (2002), 163-166. Zbl 1028.53016, MR 1947297; reference:[24] Shaikh, A. A., Kundu, H.: On equivalency of various geometric structures.J. Geom. 105 (2014), 139-165. Zbl 1297.53026, MR 3176344, 10.1007/s00022-013-0200-4; reference:[25] Shukla, S. S., Singh, D. D.: On $(\epsilon)$-trans-Sasakian manifolds.Int. J. Math. Anal., Ruse 4 (2010), 2401-2414. Zbl 1227.53045, MR 2770033; reference:[26] Singh, J. P.: On $m$-projectively flat almost pseudo Ricci symmetric manifolds.Acta Math. Univ. Comen., New Ser. 86 (2017), 335-343. Zbl 1399.53059, MR 3702446; reference:[27] Takahashi, T.: Sasakian manifold with pseudo-Riemannian metric.Tohoku Math. J., II. Ser. 21 (1969), 271-290. Zbl 0187.43601, MR 0248698, 10.2748/tmj/1178242996; reference:[28] Tripathi, M. M., Gupta, P.: On $\tau$-curvature tensor in $K$-contact and Sasakian manifolds.Int. Electron. J. Geom. 4 (2011), 32-47. Zbl 1221.53079, MR 2801462; reference:[29] Yano, K.: Concircular geometry I. Concircular transformations.Proc. Acad., Tokyo 16 (1940), 195-200 \99999JFM99999 66.0888.01. MR 0003113, 10.3792/pia/1195579139; reference:[30] Yano, K., Bochner, S.: Curvature and Betti Numbers.Annals of Mathematics Studies 32. Princeton University Press, Princeton (1953). Zbl 0051.39402, MR 0062505, 10.1515/9781400882205; reference:[31] Yano, K., Kon, M.: Anti-invariant submanifolds of Sasakian space forms. I.Tohoku Math. J., II. Ser. 29 (1977), 9-23. Zbl 0353.53033, MR 0433356, 10.2748/tmj/1178240692; reference:[32] Zamkovoy, S.: Canonical connections on paracontact manifolds.Ann. Global Anal. Geom. 36 (2009), 37-60. Zbl 1177.53031, MR 2520029, 10.1007/s10455-008-9147-3

  2. 2
    دورية أكاديمية

    المؤلفون: Lu, Wei, Mao, Jing, Wu, Chuanxi

    وصف الملف: application/pdf

    العلاقة: mr:MR4111854; zbl:07217146; reference:[1] Ashbaugh, M. S., Benguria, R. D.: Universal bounds for the low eigenvalues of Neumann Laplacians in $n$ dimensions.SIAM J. Math. Anal. 24 (1993), 557-570. Zbl 0796.35122, MR 1215424, 10.1137/0524034; reference:[2] Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S., Weidl, T.: Low eigenvalues of Laplace and Schrödinger operators.Oberwolfach Rep. 6 (2009), 355-428. Zbl 1177.35003, MR 2604061, 10.4171/OWR/2009/06; reference:[3] Bandle, C.: Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane.SIAM J. Appl. Math. 22 (1972), 142-147. Zbl 0237.35069, MR 0313648, 10.1137/0122016; reference:[4] Bandle, C.: Isoperimetric Inequalities and Applications.Monographs and Studies in Mathematics 7, Pitman, Boston (1980). Zbl 0436.35063, MR 0572958; reference:[5] Brouwer, L. E. J.: Über Abbildung von Mannigfaltigkeiten.Math. Ann. 71 (1911), 97-115 German \99999JFM99999 42.0417.01. MR 1511644, 10.1007/BF01456931; reference:[6] Chavel, I.: Eigenvalues in Riemannian Geometry.Pure and Applied Mathematics 115, Academic Press, Orlando (1984). Zbl 0551.53001, MR 0768584, 10.1016/S0079-8169(13)62888-3; reference:[7] Enache, C., Philippin, G. A.: Some inequalities involving eigenvalues of the Neumann Laplacian.Math. Methods Appl. Sci. 36 (2013), 2145-2153. Zbl 1276.35121, MR 3124783, 10.1002/mma.2743; reference:[8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds.Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. Zbl 1302.35275, MR 3268868, 10.1007/s00526-013-0692-7; reference:[9] Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains.J. Differ. Geom. 83 (2009), 637-662. Zbl 1186.35120, MR 2581359, 10.4310/jdg/1264601037; reference:[10] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel.J. Math. Pures Appl. 101 (2014), 372-393. Zbl 1285.58013, MR 3168915, 10.1016/j.matpur.2013.06.006; reference:[11] Spanier, E. H.: Algebraic Topology.McGraw-Hill Series in Higher Mathematics, \hbox{McGraw}-Hill, New York (1966). Zbl 0145.43303, MR 0210112, 10.1007/978-1-4684-9322-1; reference:[12] Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area.J. Ration. Mech. Anal. 3 (1954), 343-356. Zbl 0055.08802, MR 0061749, 10.1512/iumj.1954.3.53017; reference:[13] Weinberger, H. F.: An isoperimetric inequality for the $n$-dimensional free membrane problem.J. Ration. Mech. Anal. 5 (1956), 633-636. Zbl 0071.09902, MR 0079286, 10.1512/iumj.1956.5.55021; reference:[14] Xia, C.: A universal bound for the low eigenvalues of Neumann Laplacians on compact domains in a Hadamard manifold.Monatsh. Math. 128 (1999), 165-171. Zbl 0941.58021, MR 1712488, 10.1007/s006050050054

  3. 3
    دورية أكاديمية

    المؤلفون: Mao, Jing

    وصف الملف: application/pdf

    العلاقة: mr:MR4078355; zbl:07217130; reference:[1] Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev.J. Differ. Geom. 11 (1976), 573-598 French. Zbl 0371.46011, MR 0448404, 10.4310/jdg/1214433725; reference:[2] Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampère Equations.Grundlehren der Mathematischen Wissenschaften 252, Springer, New York (1982). Zbl 0512.53044, MR 0681859, 10.1007/978-1-4612-5734-9; reference:[3] Aubin, T.: Some Nonlinear Problems in Riemannian Geometry.Springer Monographs in Mathematics, Springer, Berlin (1998). Zbl 0896.53003, MR 1636569, 10.1007/978-3-662-13006-3; reference:[4] Bakry, D., Émery, M.: Hypercontractivité de semi-groupes de diffusion.C. R. Acad. Sci., Paris, Sér. I 299 (1984), 775-778 French. Zbl 0563.60068, MR 0772092; reference:[5] Bakry, D., Émery, M.: Diffusions hypercontractives.Séminaire de probabilités XIX 1983/84 Lecture Notes in Mathematics 1123, Springer, Berlin (1985), 177-206. Zbl 0561.60080, MR 0889476, 10.1007/BFb0075847; reference:[6] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights.Compos. Math. 53 (1984), 259-275. Zbl 0563.46024, MR 0768824; reference:[7] Catrina, F., Wang, Z.-Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions.Commun. Pure Appl. Math. 54 (2001), 229-258. Zbl 1072.35506, MR 1794994, 10.1002/1097-0312(200102)54:23.0.CO;2-I; reference:[8] Chavel, I.: Eigenvalues in Riemannian Geometry.Pure and Applied Mathematics 115, Academic Press, Orlando (1984). Zbl 0551.53001, MR 0768584, 10.1016/S0079-8169(13)62888-3; reference:[9] Carmo, M. do, Xia, C.: Ricci curvature and the topology of open manifolds.Math. Ann. 316 (2000), 319-400. Zbl 0958.53025, MR 1741276, 10.1007/s002080050018; reference:[10] Carmo, M. P. do, Xia, C.: Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities.Compos. Math. 140 (2004), 818-826. Zbl 1066.53073, MR 2041783, 10.1112/S0010437X03000745; reference:[11] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds.Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. Zbl 1302.35275, MR 3268868, 10.1007/s00526-013-0692-7; reference:[12] Gray, A.: Tubes.Addison-Wesley Publishing Company, Redwood City (1990). Zbl 0692.53001, MR 1044996, 10.1007/978-3-0348-7966-8; reference:[13] Hardy, G. H., Littlewood, J.-E., Pólya, G.: Inequalities.Cambridge University Press, Cambridge (1952). Zbl 0047.05302, MR 0046395; reference:[14] Hebey, E.: Sobolev Spaces on Riemannian Manifolds.Lecture Notes in Mathematics 1635, Springer, Berlin (1996). Zbl 0866.58068, MR 1481970, 10.1007/BFb0092907; reference:[15] Katz, N. N., Kondo, K.: Generalized space forms.Trans. Am. Math. Soc. 354 (2002), 2279-2284. Zbl 0990.53032, MR 1885652, 10.1090/S0002-9947-02-02966-5; reference:[16] Kondo, K., Tanaka, M.: Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. I.Math. Ann. 351 (2011), 251-266. Zbl 1243.53072, MR 2836657, 10.1007/s00208-010-0593-4; reference:[17] Ledoux, M.: On manifolds with non-negative Ricci curvature and Sobolev inequalities.Commun. Anal. Geom. 7 (1999), 347-353. Zbl 0953.53025, MR 1685586, 10.4310/CAG.1999.v7.n2.a7; reference:[18] Lieb, E. H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities.Ann. Math. (2) 118 (1983), 349-374. Zbl 0527.42011, MR 0717827, 10.2307/2007032; reference:[19] Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor.Comment. Math. Helv. 78 (2003), 865-883. Zbl 1038.53041, MR 2016700, 10.1007/s00014-003-0775-8; reference:[20] Mao, J.: Open manifold with nonnegative Ricci curvature and collapsing volume.Kyushu J. Math. 66 (2012), 509-516. Zbl 1276.53045, MR 3051351, 10.2206/kyushujm.66.509; reference:[21] Mao, J.: Eigenvalue Estimation and Some Results on Finite Topological Type.Ph.D. Thesis, IST-UTL (2013).; reference:[22] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel.J. Math. Pures Appl. (9) 101 (2014), 372-393. Zbl 1285.58013, MR 3168915, 10.1016/j.matpur.2013.06.006; reference:[23] Mao, J.: The Gagliardo-Nirenberg inequalities and manifolds with non-negative weighted Ricci curvature.Kyushu J. Math. 70 (2016), 29-46. Zbl 1342.53056, MR 3444586, 10.2206/kyushujm.70.029; reference:[24] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.Available at https://arxiv.org/abs/math/0211159Test (2002). Zbl 1130.53001; reference:[25] Petersen, P.: Comparison geometry problem list.Riemannian Geometry Fields Institute Monographs 4, American Mathematical Society, Providence (1996), 87-115. Zbl 0843.53031, MR 1377310, 10.1090/fim/004/04; reference:[26] Schoen, R., Yau, S.-T.: Lectures on Differential Geometry.Conference Proceedings and Lecture Notes in Geometry and Topology 1, International Press, Cambridge (1994). Zbl 0830.53001, MR 1333601; reference:[27] Shiohama, K., Tanaka, M.: Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below.Math. Z. 241 (2002), 341-351. Zbl 1020.53019, MR 1935490, 10.1007/s002090200418; reference:[28] Talenti, G.: Best constant in Sobolev inequality.Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. Zbl 0353.46018, MR 0463908, 10.1007/BF02418013; reference:[29] Wei, G., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor.J. Differ. Geom. 83 (2009), 377-405. Zbl 1189.53036, MR 2577473, 10.4310/jdg/1261495336; reference:[30] Xia, C.: Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant.Ill. J. Math. 45 (2001), 1253-1259. Zbl 0996.53024, MR 1894894, 10.1215/ijm/1258138064; reference:[31] Xia, C.: The Gagliardo-Nirenberg inequalities and manifolds of non-negative Ricci curvature.J. Funct. Anal. 224 (2005), 230-241. Zbl 1071.53019, MR 2139111, 10.1016/j.jfa.2004.11.009; reference:[32] Xia, C.: The Caffarelli-Kohn-Nirenberg inequalities on complete manifolds.Math. Res. Lett. 14 (2007), 875-885. Zbl 1143.53036, MR 2350131, 10.4310/MRL.2007.v14.n5.a14

  4. 4
    دورية أكاديمية

    المؤلفون: Santos, M. S.

    وصف الملف: application/pdf

    العلاقة: mr:MR3631682; zbl:Zbl 06736745; reference:[1] Bakry D., Emery E.: Diffusions hypercontractives.Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pp. 177–206. Zbl 0561.60080, MR 0889476; reference:[2] Bakry D., Ledoux M.: Sobolev inequalities and Myers diameter theorem for an abstract Markov generator.Duke Math. J. 81 (1996), no. 1, 252–270. MR 1412446; reference:[3] Beem J., Ehrlich P., Easley K.: Global Lorentzian Geometry.2nd edn., Marcel Dekker, New York, 1996. Zbl 0846.53001, MR 1384756; reference:[4] Case J.: Singularity theorems and the lorentzian splitting theorem for the Bakry-Emery-Ricci tensor.J. Geom. Phys. 60 (2010), no. 3, 477–490. Zbl 1188.53075, MR 2600009, 10.1016/j.geomphys.2009.11.001; reference:[5] Cavalcante M.P., Oliveira J.Q., Santos M.S.: Compactness in weighted manifolds and applications.Results Math. 68 (2015), 143–156. Zbl 1327.53037, MR 3391497, 10.1007/s00025-014-0427-x; reference:[6] Frankel T.: Gravitation Curvature. An Introduction to Einstein's Theory.W.H. Freeman and Co., San Francisco, Calif., 1979. MR 0518868; reference:[7] Frankel T., Galloway G.: Energy density and spatial curvature in general relativity.J. Math. Phys. 22 (1981), no. 4, 813–817. Zbl 0483.76135, MR 0617327, 10.1063/1.524961; reference:[8] Galloway G.J.: A generalization of Myers theorem and an application to relativistic cosmology.J. Differential Geom. 14 (1979), 105–116. Zbl 0444.53036, MR 0577883, 10.4310/jdg/1214434856; reference:[9] Galloway G.J., Woolgar E.: Cosmological singularities in Bakry-Émery space-times.preprint, 2013. MR 3282334; reference:[10] Ledoux M.: The geometry of Markov diffusion generators.Ann. Fac. Sci. Toulouse Math. 9 (2000), no. 2, 305–366. Zbl 0980.60097, MR 1813804, 10.5802/afst.962; reference:[11] Limoncu M.: The Bakry-Emery Ricci tensor and its applications to some compactness theorems.Math. Z. 271 (2012), 715–722. Zbl 1264.53042, MR 2945580, 10.1007/s00209-011-0886-7; reference:[12] Limoncu M.: Modifications of the Ricci tensor and applications.Arch. Math. (Basel) 95 (2010), 191–199. MR 2674255, 10.1007/s00013-010-0150-0; reference:[13] Lott J.: Some geometric properties of the Bakry-Émery-Ricci tensor.Comment. Math. Helv. 78 (2003), no. 4, 865–883. Zbl 1038.53041, MR 2016700, 10.1007/s00014-003-0775-8; reference:[14] Morgan F.: Myers' theorem with density.Kodai Math. J. 29 (2006), no. 3, 454–461. Zbl 1132.53306, MR 2278776, 10.2996/kmj/1162478772; reference:[15] Myers S.B.: Riemannian manifolds with positive mean curvature.Duke Math. J. 8 (1941) 401–404. Zbl 0025.22704, MR 0004518, 10.1215/S0012-7094-41-00832-3; reference:[16] Qian Z.: Estimates for weighted volumes and applications.Quart. J. Math. Oxford 48 (1997), 235–242. Zbl 0902.53032, MR 1458581, 10.1093/qmath/48.2.235; reference:[17] Rimoldi M.: A remark on Einstein warped products.Pacific J. Math. 252 (2011), no. 1, 207–218. Zbl 1232.53036, MR 2862148, 10.2140/pjm.2011.252.207; reference:[18] Ringström H.: On the Topology and Future Stability of the Universe.Oxford Mathematical Monographs, Oxford University Press, Oxford, 2013. Zbl 1270.83005, MR 3186493; reference:[19] Rupert M., Woolgar E.: Bakry-Émery black holes.Classical Quantum Gravity 31 (2014), no. 2, 025008. Zbl 1302.83023, MR 3157702, 10.1088/0264-9381/31/2/025008; reference:[20] Sprouse S.: Integral curvature bounds and bounded diameter.Comm. Anal. Geom. 8 (2000), 531–543. Zbl 0984.53018, MR 1775137, 10.4310/CAG.2000.v8.n3.a4; reference:[21] Wei G., Wylie W.: Comparison geometry for the Bakry-Emery Ricci tensor.J. Differential Geom. 83 (2009), no. 2, 377–405. Zbl 1189.53036, MR 2577473; reference:[22] Woolgar E.: Scalar-tensor gravitation and the Bakry-Emery-Ricci tensor.Classical Quantum Gravity 30 (2013) 085007. Zbl 1267.83094, MR 3044364, 10.1088/0264-9381/30/8/085007; reference:[23] Yun J.-G.: A note on the generalized Myers theorem.Bull. Korean Math. Soc. 46 (2009), no. 1, 61–66. Zbl 1176.53045, MR 2488500, 10.4134/BKMS.2009.46.1.061; reference:[24] Zhang S.: A theorem of Ambrose for Bakry-Emery Ricci tensor.Ann. Global Anal. Geom. 45 (2014), no. 3, 233–238. Zbl 1292.53027, MR 3170524, 10.1007/s10455-013-9396-7

  5. 5
    دورية أكاديمية

    المؤلفون: Khanh, Nguyen Ngoc

    وصف الملف: application/pdf

    العلاقة: mr:MR3610650; zbl:Zbl 06674900; reference:[1] Chen, Q., Jost, J., Qiu, H.B.: Existence and Liouville theorems for $V$-harmonic maps from complete manifolds.Ann. Global Anal. Geom. 42 (2012), 565–584. Zbl 1270.58010, MR 2995205, 10.1007/s10455-012-9327-z; reference:[2] Davies, E.B.: Heat kernels and spectral theory.Cambridge University Press, 1989. Zbl 0699.35006, MR 0990239; reference:[3] Dung, N.T., Khanh, N.N.: Gradient estimates of Hamilton - Souplet - Zhang type for a general heat equation on Riemannian manifolds.Arch. Math (Basel) 105 (2015), 479–490. Zbl 1329.58023, MR 3413923, 10.1007/s00013-015-0828-4; reference:[4] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds.Arch. Math. (Basel) 94 (2010), 265–275. Zbl 1194.58020, MR 2602453, 10.1007/s00013-009-0091-7; reference:[5] Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator.Acta Math. 156 (1986), 152–201. Zbl 0611.58045, MR 0834612; reference:[6] Li, Y.: Li-Yau-Hamilton estimates and Bakry-Emery Ricci curvature.Nonlinear Anal. 113 (2015), 1–32. Zbl 1310.58015, MR 3281843; reference:[7] Negrin, E.R.: Gradient estimates and a Liouville type theorem for the Schrödinger operator.J. Funct. Anal. 127 (1995), 198–203. Zbl 0842.58078, MR 1308622, 10.1006/jfan.1995.1008

  6. 6
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: mr:MR3535632; zbl:Zbl 06644062; reference:[1] Bejancu, A.: Geometry of CR-submanifolds.Mathematics and its Applications (East European Series), vol. 23, D. Reidel Publishing Co., Dordrecht, 1986. Zbl 0605.53001, MR 0861408; reference:[2] Blair, D.E.: Contact manifolds in Riemannian geometry.Math., vol. 509, Springer-Verlag, New York, 1976. Zbl 0319.53026, MR 0467588; reference:[3] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds.Progress in Mathematics, vol. 203, Birkhauser Boston, Inc., Boston, MA, 2002. Zbl 1011.53001, MR 1874240; reference:[4] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Slant submanifolds in Sasakian manifolds.Glasgow Math. J. 42 (1) (2000), 125–138. Zbl 0957.53022, MR 1739684, 10.1017/S0017089500010156; reference:[5] Chen, B.Y.: Some pinching and classification theorems for minimal submanifolds.Arch. Math. (Basel) 60 (6) (1993), 568–578. Zbl 0811.53060, MR 1216703, 10.1007/BF01236084; reference:[6] Chen, B.Y.: Mean curvature and shape operator of isometric immersions in real space form.Glasgow Math. J. 38 (1996), 87–97. MR 1373963, 10.1017/S001708950003130X; reference:[7] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions.Glasgow Math. J. 41 (1999), 33–41. Zbl 0962.53015, MR 1689730, 10.1017/S0017089599970271; reference:[8] Chen, B.Y.: On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms.Arch. Math. (Basel) 74 (2000), 154–160. Zbl 1037.53041, MR 1735232, 10.1007/PL00000420; reference:[9] Defever, F., Mihai, I., Verstrelen, L.: B.Y.Chen’s inequality for $C$-totally real submanifolds of Sasakian space forms.Boll. Un. Mat. Ital. B (7) 11 (1997), 365–374. MR 1459285; reference:[10] Hong, S., Tripathi, M.M.: On Ricci curvature of submanifolds.Internat. J. Pure Appl. Math. Sci. 2 (2) (2005), 227–245. Zbl 1131.53309, MR 2294062; reference:[11] Hong, S., Tripathi, M.M.: On Ricci curvature of submanifolds of generalized Sasakian space forms.Internat. J. Pure Appl. Math. Sci. 2 (2) (2005), 173–201. Zbl 1131.53308, MR 2294058; reference:[12] Hong, S., Tripathi, M.M.: Ricci curvature of submanifolds of a Sasakian space form.Iranian Journal of Mathematical Sciences and Informatics 1 (2) (2006), 31–51. Zbl 1301.53051, MR 2294062; reference:[13] Mihai, I.: Ricci curvature of submanifolds in Sasakian space forms.J. Austral. Math. Soc. 72 (2002), 247–256. Zbl 1017.53052, MR 1887135, 10.1017/S1446788700003888; reference:[14] Petersen, P.: Riemannian geometry.Springer-Verlag, 2006. Zbl 1220.53002, MR 2243772; reference:[15] Tripathi, M.M.: Almost semi-invariant submanifolds of trans-Sasakian manifolds.J. Indian Math. Soc. (N.S.) 62 (1–4) (1996), 225–245. Zbl 0901.53040, MR 1458496; reference:[16] Vaisman, I.: Conformal changes of almost contact metric structures.Geometry and Differential Geometry, Lecture Notes in Math., vol. 792, 1980, pp. 435–443. Zbl 0431.53030, MR 0585886; reference:[17] Yamaguchi, S., Kon, M., Ikawa, T.: C-totallly real submanifolds.J. Differential Geom. 11 (1) (1976), 59–64. MR 0405294, 10.4310/jdg/1214433297

  7. 7
    دورية أكاديمية

    المؤلفون: Mao, Jing

    وصف الملف: application/pdf

    العلاقة: mr:MR3483223; zbl:Zbl 06587874; reference:[1] Abresch, U.: Lower curvature bounds, Toponogov's theorem, and bounded topology.Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 651-670. MR 0839689, 10.24033/asens.1499; reference:[2] Barroso, C. S., Bessa, G. Pacelli: Lower bounds for the first Laplacian eigenvalue of geodesic balls of spherically symmetric manifolds.Int. J. Appl. Math. Stat. 6 (2006), Article No. D06, 82-86. MR 2338140; reference:[3] Chavel, I.: Eigenvalues in Riemannian Geometry.Pure and Applied Mathematics 115 Academic Press, Orlando (1984). MR 0768584; reference:[4] Cheeger, J., Yau, S. T.: A lower bound for the heat kernel.Commun. Pure Appl. Math. 34 (1981), 465-480. MR 0615626, 10.1002/cpa.3160340404; reference:[5] Cheng, S.-Y.: Eigenfunctions and eigenvalues of Laplacian.Differential Geometry Proc. Sympos. Pure Math. 27, Stanford Univ., Stanford, Calif., 1973, Part 2 Amer. Math. Soc., Providence (1975), 185-193 S. S. Chern et al. MR 0378003; reference:[6] Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications.Math. Z. 143 (1975), 289-297. MR 0378001, 10.1007/BF01214381; reference:[7] Elerath, D.: An improved Toponogov comparison theorem for nonnegatively curved manifolds.J. Differ. Geom. 15 (1980), 187-216. MR 0614366, 10.4310/jdg/1214435490; reference:[8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds.Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. Zbl 1302.35275, MR 3268868, 10.1007/s00526-013-0692-7; reference:[9] Gage, M. E.: Upper bounds for the first eigenvalue of the Laplace-Beltrami operator.Indiana Univ. Math. J. 29 (1980), 897-912. MR 0589652, 10.1512/iumj.1980.29.29061; reference:[10] Hu, Z., Jin, Y., Xu, S.: A volume comparison estimate with radially symmetric Ricci curvature lower bound and its applications.Int. J. Math. Math. Sci. 2010 (2010), Article ID 758531, 14 pages. Zbl 1196.53024, MR 2629591; reference:[11] Itokawa, Y., Machigashira, Y., Shiohama, K.: Maximal diameter theorems for manifolds with restricted radial curvature.Proc. of the 5th Pacific Rim Geometry Conf., Tôhoku University, Sendai, Japan, 2000 Tohoku Math. Publ. 20 Tôhoku University, Sendai (2001), 61-68 S. Nishikawa. Zbl 1065.53033, MR 1864887; reference:[12] Kasue, A.: A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold.Jap. J. Math., New Ser. 8 (1982), 309-341. MR 0722530, 10.4099/math1924.8.309; reference:[13] Katz, N. N., Kondo, K.: Generalized space forms.Trans. Am. Math. Soc. 354 (2002), 2279-2284. Zbl 0990.53032, MR 1885652, 10.1090/S0002-9947-02-02966-5; reference:[14] Klingenberg, W.: Contributions to Riemannian geometry in the large.Ann. Math. (2) 69 (1959), 654-666. MR 0105709, 10.2307/1970029; reference:[15] Mao, J.: Eigenvalue inequalities for the {$p$}-Laplacian on a Riemannian manifold and estimates for the heat kernel.J. Math. Pures Appl. (9) 101 (2014), 372-393. Zbl 1285.58013, MR 3168915, 10.1016/j.matpur.2013.06.006; reference:[16] Mao, J.: Eigenvalue Estimation and some Results on Finite Topological Type.Ph.D. thesis Mathematics department of Instituto Superior Técnico-Universidade Técnica de Lisboa (2013).; reference:[17] Petersen, P.: Riemannian Geometry.Graduate Texts in Mathematics 171 Springer, New York (2006). Zbl 1220.53002, MR 2243772; reference:[18] Shiohama, K.: Comparison theorems for manifolds with radial curvature bounded below.Differential Geometry, Proc. of the First International Symposium, Josai University, Saitama, Japan, 2001, Josai Math. Monogr. 3 Josai University, Graduate School of Science, Saitama (2001), 81-91 Q.-M. Cheng. Zbl 1037.53018, MR 1824602; reference:[19] Zhu, S.: The comparison geometry of Ricci curvature.Comparison Geometry, Berkeley, 1993-1994 Math. Sci. Res. Inst. Publ. 30 Cambridge University, Cambridge (1997), 221-262 K. Grove et al. MR 1452876

  8. 8
    دورية أكاديمية

    المؤلفون: Roth, Julien

    وصف الملف: application/pdf

    العلاقة: mr:MR3073010; zbl:Zbl 06321142; reference:[1] Aubry, E.: Finiteness of $\pi _1$ and geometric inequalities in almost positive Ricci curvature.Ann. Sci. École Norm. Sup. (4) 40 (4) (2007), 6757–695. Zbl 1141.53034, MR 2191529; reference:[2] Colbois, B., Grosjean, J. F.: A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space.Comment. Math. Helv. 82 (2007), 175–195. Zbl 1112.53003, MR 2296061, 10.4171/CMH/88; reference:[3] Fialkow, A.: Hypersurfaces of a space of constant curvature.Ann. of Math. (2) 39 (1938), 762–783. Zbl 0020.06601, MR 1503435, 10.2307/1968462; reference:[4] Grosjean, J. F.: Upper bounds for the first eigenvalue of the Laplacian on compact manifolds.Pacific J. Math. 206 (1) (2002), 93–111. MR 1924820, 10.2140/pjm.2002.206.93; reference:[5] Grosjean, J. F., Roth, J.: Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces.Math. Z. 271 (1) (2012), 469–488. Zbl 1243.53071, MR 2917153, 10.1007/s00209-011-0872-0; reference:[6] Hoffman, D., Spruck, D.: Sobolev and isoperimetric inequalities for Riemannian submanifolds.Comm. Pure Appl. Math. 27 (1974), 715–727. Zbl 0295.53025, MR 0365424, 10.1002/cpa.3160270601; reference:[7] Reilly, R.C.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space.Comment. Math. Helv. 52 (1977), 525–533. Zbl 0382.53038, MR 0482597, 10.1007/BF02567385; reference:[8] Roth, J.: Pinching of the first eigenvalue of the Laplacian and almost-Einstein hypersurfaces of Euclidean space.Ann. Global Anal. Geom. 33 (3) (2008), 293–306. MR 2390836, 10.1007/s10455-007-9086-4; reference:[9] Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds.Kyushu J. Math. 48 (2) (1994), 291–306. Zbl 0826.53045, MR 1294532, 10.2206/kyushujm.48.291; reference:[10] Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds II.Kyushu J. Math. 54 (1) (2000), 103–109. Zbl 1005.53028, MR 1762795, 10.2206/kyushujm.54.103; reference:[11] Thomas, T. Y.: On closed space of constant mean curvature.Amer. J. Math. 58 (1936), 702–704. MR 1507192, 10.2307/2371240; reference:[12] Vlachos, T.: Almost-Einstein hypersurfaces in the Euclidean space.Illinois J. Math. 53 (4) (2009), 1221–1235. Zbl 1213.53072, MR 2741186

  9. 9
    دورية أكاديمية

    المؤلفون: Ruiz, Juan Miguel

    وصف الملف: application/pdf

    العلاقة: mr:MR2591667; zbl:Zbl 1212.53015; reference:[1] Akutagawa, K., Florit, L., Petean, J.: On Yamabe constants of Riemannian products.Comm. Anal. Geom. 15 (5) (2007), 947–969, e-print math. DG/0603486. Zbl 1147.53032, MR 2403191; reference:[2] Besse, A.: Einstein manifolds.Ergeb. Math. Grenzgeb (3), 10, Springer, Berlin, 1987. Zbl 0613.53001, MR 0867684; reference:[3] Gover, R., Nurowski, P.: Obstructions to conformally Einstein metrics in n dimensions.J. Geom. Phys. 56 (2006), 450–484. Zbl 1098.53014, MR 2171895, 10.1016/j.geomphys.2005.03.001; reference:[4] Ilias, S.: Constantes explicites pour les inegalites de Sobolev sur les varietes riemannianes compactes.Ann. Inst. Fourier (Grenoble) 33 (2), 151–165. MR 0699492, 10.5802/aif.921; reference:[5] Listing, M.: Conformal Einstein spaces in N-dimensions.Ann. Global Anal. Geom. 20 (2001), 183–197. Zbl 1024.53031, MR 1857177, 10.1023/A:1011612830580; reference:[6] Listing, M.: Conformal Einstein spaces in N-dimensions II.J. Geom. Phys. 56 (2006), 386–404. Zbl 1089.53030, MR 2171892, 10.1016/j.geomphys.2005.02.008; reference:[7] Moroianu, A., Ornea, L.: Conformally Einstein products and nearly Kähler manifolds.Ann. Global Anal. Geom. 22 (2008 (1)), 11–18, arXiv:math./0610599v3 [math.DG] (2007). MR 2369184; reference:[8] Obata, M.: The conjectures on conformal transformations of Riemannian manifolds.J. Differential Geometry 6 (1971), 247–248. Zbl 0236.53042, MR 0303464; reference:[9] Petean, J.: Isoperimetric regions in spherical cones and Yamabe constants of $M\times S^1$.Geom. Dedicata (2009), to appear. Zbl 1188.53035, MR 2576291

  10. 10
    دورية أكاديمية

    المؤلفون: Liu, Ximin

    وصف الملف: application/pdf

    العلاقة: mr:MR1942659; zbl:Zbl 1090.53052; reference:[1] Chen B. Y.: Some pinching and classification theorems for minimal submanifolds.Arch. Math. 60 (1993), 568–578. Zbl 0811.53060, MR 1216703; reference:[2] Chen B. Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension.Glasgow Math. J. 41 (1999), 33–41. MR 1689730; reference:[3] Chen B. Y.: On Ricci curvature of isotropic and Lagrangian submanifolds in the complex space forms.Arch. Math. 74 (2000), 154–160. MR 1735232; reference:[4] Chen B. Y., Dillen F., Verstraelen L., Vrancken L.: Totally real submanifolds of $CP^n$ satisfying a basic equality.Arch. Math. 63 (1994), 553–564. MR 1300757; reference:[5] Chen B. Y., Dillen F., Verstraelen L., Vrancken L.: An exotic totally real minimal immersion of $S^3$ and $CP^3$ and its characterization.Proc. Royal Soc. Edinburgh, Sect. A, Math. 126 (1996), 153–165. Zbl 0855.53011, MR 1378838; reference:[6] Chen B. Y., Houh C. S.: Totally real submanifolds of a quaternion projective space.Ann. Mat. Pura Appl. 120 (1979), 185–199. Zbl 0413.53031, MR 0551066; reference:[7] Ishihara S.: Quaternion Kaehlerian manifolds.J. Differential Geom. 9 (1974), 483–500. Zbl 0297.53014, MR 0348687