يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"finite-time stability"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: mr:MR4586124; zbl:Zbl 07729499; reference:[1] Diblík, J., Fečkan, M., Pospíšil, M.: Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices.Ukr. Math. J. 65 (2013), 64-76. Zbl 1283.34057, MR 3104884, 10.1007/s11253-013-0765-y; reference:[2] Diblík, J., Fečkan, M., Pospíšil, M.: On the new control functions for linear discrete delay systems.SIAM J. Control Optim. 52 (2014), 1745-1760. Zbl 1295.93008, MR 3206982, 10.1137/140953654; reference:[3] Diblík, J., Khusainov, D. Y., Růžičková, M.: Controllability of linear discrete systems with constant coefficients and pure delay.SIAM J. Control Optim. 47 (2008), 1140-1149. Zbl 1161.93004, MR 2407011, 10.1137/070689085; reference:[4] Elshenhab, A. M., Wang, X. T.: Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices.Appl. Math. Comput. 410 (2021), Article ID 126443, 13 pages. Zbl 07425968, MR 4274895, 10.1016/j.amc.2021.126443; reference:[5] Fečkan, M., Wang, J., Zhou, Y.: Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators.J. Optim. Theory Appl. 156 (2013), 79-95. Zbl 1263.93031, MR 3019302, 10.1007/s10957-012-0174-7; reference:[6] Gantmakher, F. R.: Theory of Matrices.Nauka, Moskva (1988), Russian. Zbl 0666.15002, MR 0986246; reference:[7] Khusainov, D. Y., Diblík, J., Růžičková, M., Lukáčová, J.: Representation of a solution of the Cauchy problem for an oscillating system with pure delay.Nonlinear Oscil., N.Y. 11 (2008), 276-285. Zbl 1276.34055, MR 2510692, 10.1007/s11072-008-0030-8; reference:[8] Khusainov, D. Y., Shuklin, G. V.: Relative controllability in systems with pure delay.Int. Appl. Mech. 41 (2005), 210-221. Zbl 1100.34062, MR 2190935, 10.1007/s10778-005-0079-3; reference:[9] Lazarević, M. P., Spasić, A. M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach.Math. Comput. Modelling 49 (2009), 475-481. Zbl 1165.34408, MR 2483650, 10.1016/j.mcm.2008.09.011; reference:[10] Li, M., Wang, J.: Finite time stability of fractional delay differential equations.Appl. Math. Lett. 64 (2017), 170-176. Zbl 1354.34130, MR 3564757, 10.1016/j.aml.2016.09.004; reference:[11] Li, M., Wang, J.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations.Appl. Math. Comput. 324 (2018), 254-265. Zbl 1426.34110, MR 3743671, 10.1016/j.amc.2017.11.063; reference:[12] Li, X., Yang, X., Song, S.: Lyapunov conditions for finite-time stability of time-varying time-delay systems.Automatica 103 (2019), 135-140. Zbl 1415.93188, MR 3911637, 10.1016/j.automatica.2019.01.031; reference:[13] Liang, C., Wang, J., O'Regan, D.: Controllability of nonlinear delay oscillating systems.Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 47, 18 pages. Zbl 1413.34256, MR 3661723, 10.14232/ejqtde.2017.1.47; reference:[14] Liang, C., Wang, J., O'Regan, D.: Representation of a solution for a fractional linear system with pure delay.Appl. Math. Lett. 77 (2018), 72-78. Zbl 1462.34105, MR 3725232, 10.1016/j.aml.2017.09.015; reference:[15] Pospíšil, M.: Relative controllability of neutral differential equations with a delay.SIAM J. Control Optim. 55 (2017), 835-855. Zbl 1368.34093, MR 3625799, 10.1137/15M1024287; reference:[16] Pospíšil, M.: Representation of solutions of systems of linear differential equations with multiple delays and nonpermutable variable coefficients.Math. Model. Anal. 25 (2020), 303-322. Zbl 1476.34143, MR 4116589, 10.3846/mma.2020.11194; reference:[17] Si, Y., Wang, J., Fečkan, M.: Controllability of linear and nonlinear systems governed by Stieltjes differential equations.Appl. Math. Comput. 376 (2020), Article ID 125139, 24 pages. Zbl 1475.93015, MR 4070317, 10.1016/j.amc.2020.125139; reference:[18] Wang, J., Fečkan, M., Zhou, Y.: Controllability of Sobolev type fractional evolution systems.Dyn. Partial Differ. Equ. 11 (2014), 71-87. Zbl 1314.47117, MR 3194051, 10.4310/DPDE.2014.v11.n1.a4; reference:[19] Wu, G.-C., Baleanu, D., Zeng, S.-D.: Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion.Commun. Nonlinear Sci. Numer. Simul. 57 (2018), 299-308. Zbl 07263288, MR 3724839, 10.1016/j.cnsns.2017.09.001; reference:[20] You, Z., Wang, J., O'Regan, D., Zhou, Y.: Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices.Math. Methods Appl. Sci. 42 (2019), 954-968. Zbl 1410.34235, MR 3905829, 10.1002/mma.5400

  2. 2
    دورية أكاديمية

    المؤلفون: Qayyum, Atif, Pironti, Alfredo

    وصف الملف: application/pdf

    العلاقة: mr:MR3893136; zbl:Zbl 07031760; reference:[1] Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., Tommasi, G. De: Finite-Time Stability and Control.Springer Verlag, 2014. MR 3157178; reference:[2] Amato, F., Ambrosino, R., Ariola, M., Tommasi, G. De: Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties.Int. J. Robust Nonlinear Control 21 (2011), 1080-1092. MR 2839840, 10.1002/rnc.1620; reference:[3] Amato, F., Ariola, M., Cosentino, C.: Finite-time stability of linear time-varying systems: Analysis and controller design.IEEE Trans. Automat. Control 55 (2010), 4, 1003-1008. MR 2654445, 10.1109/tac.2010.2041680; reference:[4] Amato, F., Ariola, M., Cosentino, C.: Robust finite-time stabilisation of uncertain linear systems.Int. J. Control 84 (2011), 12, 2117-2127. MR 2869612, 10.1080/00207179.2011.633230; reference:[5] Amato, F., Ariola, M., Dorato, P.: Finite-time control of linear systems subject to parametric uncertanties and disturbances.Automatica 37 (2001), 1459-1463. 10.1016/s0005-1098(01)00087-5; reference:[6] Amato, F., Cosentino, C., Tommasi, G. De, Pironti, A.: New conditions for the finite-time stability of stochastic linear time-varying systems.In: Proc. European Control Conference, (2015), pp. 1213-1218. 10.1109/ecc.2015.7330706; reference:[7] Amato, F., Cosentino, C., Tommasi, G. De, Pironti, A.: The mixed robust $H_\infty$/FTS control problem.Asian J. Control 18 (2016), 3, 828-841. MR 3502465, 10.1002/asjc.1196; reference:[8] Amato, F., Tommasi, G. De, Pironti, A.: Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems.Automatica 49 (2013), 8, 2546-2550. MR 3072649, 10.1016/j.automatica.2013.04.004; reference:[9] Amato, F., Tommasi, G. De, Mele, A., Pironti, A.: New conditions for annular finite-time stability of linear systems.In: IEEE 55th Conference on Decision and Control (2016), pp. 4925-4930. 10.1109/cdc.2016.7799022; reference:[10] Ambrosino, R., Calabrese, F., Cosentino, C., Tommasi, G. De: Sufficient conditions for finite-time stability of impulsive dynamical systems.IEEE Trans. Automat. Control 54 (2009), 4, 861-865. MR 2514824, 10.1109/tac.2008.2010965; reference:[11] Anderson, B. D .O., Moore, J. B.: Optimal Control: Linear Quadratic Methods.Englewood Cliffs, Prentice-Hall, NJ 1989. MR 0335000; reference:[12] Chen, J., Li, Q., Liu, C.: Guaranteed cost control of uncertain impulsive switched systems with nonlinear disturbances.In: UKACC International Conference on Control, (2014). 10.1109/control.2014.6915131; reference:[13] Corless, M.: Variable Structure and Lyapunov Control, chapter Robust stability analysis and controller design with quadratic Lyapunov functions.Springer Verlag, (A. S. I. Zinober, ed.), London (1994). MR 1257919, 10.1007/bfb0033675; reference:[14] Dorato, P.: Short time stability in linear time-varying systems.In: Proc. IRE International Convention Record Part 4, (1961), pp. 83-87.; reference:[15] Golestani, M., Mobayen, S., Tchier, F.: Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties.IET Control Theory Appl. 10 (2016), 1675-1683. MR 3585276, 10.1049/iet-cta.2016.0163; reference:[16] Haddad, W. M., L'Afflitto, A.: Finite-time stabilization and optimal feedback control.IEEE Trans. Automat. Control 61 (2016), 4, 1069-1074. MR 3483539, 10.1109/tac.2015.2454891; reference:[17] Li, L., Yan, G.: Sufficient optimality conditions for impulsive and switching optimal control problems.In: Proc. 34th Chinese Control Conference, (2015). 10.1109/chicc.2015.7260012; reference:[18] Mastellone, S., Dorato, P., Abdallah, C. T.: Finite-time stability of discrete-time nonlinear systems: analysis and design.In: Proc. IEEE Conference on Decision and Control, (2004), pp. 2572-2577. 10.1109/cdc.2004.1428845; reference:[19] Mobayen, S., Tchier, F.: A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems.Kybernetika 51 (2015), 1035-1048. MR 3453684, 10.14736/kyb-2015-6-1035; reference:[20] Moheimani, S. O. R., Petersen, I. R.: Optimal guaranteed cost control of uncertain systems via static and dynamic output feedback.Automatica 32 (1996), 4, 575-579. MR 1386704, 10.1016/0005-1098(95)00178-6; reference:[21] Petersen, I. R., McFarlane, D. C.: Optimal guaranteed cost control of uncertain linear systems.In: American Control Conference (1992), pp. 2929-2930. MR 1293449, 10.23919/acc.1992.4792682; reference:[22] Petersen, I. R., McFarlane, D. C., Rotea, M. A.: Optimal guaranteed cost control of discrete-time uncertain linear systems.Int. J. Robust Nonlinear Control 8 (1998), 7, 649-657. MR 1632206, 10.1002/(sici)1099-1239(19980715)8:83.3.co;2-y; reference:[23] Qayyum, A.: Finite time output regulation of sampled data linear systems through impulsive observer.In: Proc. SICE International Symposium on Control Systems (2017), pp. 62-66.; reference:[24] Qayyum, A., Tommasi, G. De: Finite-time state estimation of sampled output impulsive dynamical linear system.In: Proc. 24th Mediterranean Conference on Control and Automation (2016), pp. 154-158. 10.1109/MED.2016.7535975; reference:[25] Qayyum, A., Malik, M. B., Tommasi, G. De, Pironti, A.: Finite time estimation of a linear system based on sampled measurement through impulsive observer.In: Proc. 28th Chinese Control and Decision Conference (2016), pp. 978-981. 10.1109/CCDC.2016.7531125; reference:[26] Qayyum, A., Pironti, A.: Finite time stability with guaranteed cost control for linear systems.In: Proc. 21st International Conference on System Theory, Control and Computing (2017). 10.1109/ICSTCC.2017.8107124; reference:[27] Qayyum, A., Salman, M., Malik, M. B.: Receding horizon observer for linear time-varying systems.In: Trans. Inst. Measurement and Control (2018). 10.1177/0142331218805153; reference:[28] Ren, J., Zhang, Q.: Robust normalization and guaranteed cost control for a class of uncertain descriptor systems.Automatica 48 (2012), 5, 1693-1697. MR 2950418, 10.1016/j.automatica.2012.05.038; reference:[29] Vaseghi, B., Pourmina, M. A., Mobayen, S.: Finite-time chaos synchronization and its application in wireless sensor networks.In: Trans. Inst. Measurement and Control (2017). 10.1177/0142331217731617; reference:[30] Xu, H. L., Teo, K. L., Liu, X. Z.: Robust stability analysis of guaranteed cost control for impulsive switched systems.IEEE Trans. Automat. Contrpl 38 (2008), 5, 1419-1422. 10.1109/tsmcb.2008.925747; reference:[31] Yan, Z., Zhang, G., Zhang, W.: Finite-time stability and stabilization of linear ito stochastic systems with state and control dependent noise.Asian J. Control 15 (2013), 270-281. MR 3015775, 10.1002/asjc.531; reference:[32] Yan, Z., Zhang, W., Zhang, G.: Finite-time stability and stabilization of it's stochastic systems with markovian switching: Mode-dependent parameter approach.IEEE Trans. Automat. Control 60 (2015), 9, 2428-2433. MR 3393133, 10.1109/tac.2014.2382992; reference:[33] Zhao, S., Sun, J., Liu, L.: Finite-time stability of linear time-varying singular systems with impulsive effects.Int. J. Control 81 (2008), 11, 1824-1829. MR 2462577, 10.1080/00207170801898893

  3. 3
    دورية أكاديمية

    المؤلفون: Kallel, Wajdi, Kharrat, Thouraya

    وصف الملف: application/pdf

    العلاقة: mr:MR3750107; zbl:Zbl 06861628; reference:[1] Artstein, Z.: Stabilization with relaxed controls.Nonlinear Anal. TMA 7 (1983), 1163-1173. Zbl 0525.93053, MR 0721403, 10.1016/0362-546x(83)90049-4; reference:[2] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators.IEEE Trans. Automat. Control 43 (1998), 678-682. Zbl 0925.93821, MR 1618028, 10.1109/9.668834; reference:[3] Cai, X. S., Han, Z. Z., Zhang, W.: Simultaneous stabilization for a collection of multi-input nonlinear systems with uncertain parameters.Acta Automat. Sinica 35 (2009), 206-209. MR 2531861, 10.3724/sp.j.1004.2009.00206; reference:[4] Čelikovský, S., Aranda-Bricaire, E.: Constructive nonsmooth stabilization of triangular systems.Systems Control Lett. 36 (1999), 21-37. MR 1750623, 10.1016/s0167-6911(98)00062-0; reference:[5] Huang, J., Yu, L., Xia, S.: Stabilization and finite time stabilization of nonlinear differential inclusions based on control Lyapunov function.Circuits Systems Signal Process. 33 (2015), 2319-2331. MR 3217482, 10.1007/s00034-014-9741-5; reference:[6] Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty.IEEE Trans. Automat. Control 51 (2006), 858-862. MR 2232614, 10.1109/tac.2006.875006; reference:[7] Jerbi, H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems.Systems Control Lett. 41 (2002), 173-178. MR 2072233, 10.1016/s0167-6911(01)00172-4; reference:[8] Jerbi, H., Kallel, W., Kharrat, T.: On the stabilization of homogeneous perturbed systems.J. Dynamical Control Syst. 14 (2008), 595-606. MR 2448693, 10.1007/s10883-008-9053-9; reference:[9] Jerbi, H., Kharrat, T.: Only a level set of a control Lyapunov function for homogeneous systems.Kybernetika 41 (2005), 593-600. MR 2192425; reference:[10] Krstic, M., Kokotovic, P. V.: Control Lyapunov function for adaptive nonlinear stabilization.Systems Control Lett. 26 (1995), 17-23. MR 1347637, 10.1016/0167-6911(94)00107-7; reference:[11] Massera, J. L.: Contributions to stability theory.Ann. Math. 64 (1956), 182-206. MR 0079179, 10.2307/1969955; reference:[12] Moulay, E.: Stabilization via homogeneous feedback controls.Automatica 44 (2008), 2981-2984. MR 2527229, 10.1016/j.automatica.2008.05.003; reference:[13] Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems.J. Math. Anal. Appl. 323 (2006), 1430-1443. Zbl 1131.93043, MR 2260193, 10.1016/j.jmaa.2005.11.046; reference:[14] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field.Systems Control Lett. 19 (1992), 467-473. Zbl 0762.34032, MR 1195304, 10.1016/0167-6911(92)90078-7; reference:[15] Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization.Math. Control Signals Syst. 9 (1996), 34-58. MR 1410047, 10.1007/bf01211517; reference:[16] Shafiei, M. H., Yazdanpanah, M. J.: Stabilization of nonlinear systems with a slowly varying parameter by a control Lyapunov function.ISA Trans. 49 (2010), 215-221. 10.1016/j.isatra.2009.11.004; reference:[17] Sontag, E. D.: A "universal" construction of Artstein's Theorem on nonlinear stabilization.Systems Control Lett. 13 (1989), 117-123. MR 1014237, 10.1016/0167-6911(89)90028-5; reference:[18] Sontag, E. D.: A Lyapunov-like caharacterization of asymptotic controlability.SIAM J. Control Optim. 21 (1983), 462-471. MR 0696908, 10.1137/0321028; reference:[19] Tsinias, J.: Stabilization of affine in control nonlinear systems.Nonlinear Anal. TMA 12 (1988), 1283-1296. Zbl 0662.93055, MR 0969506, 10.1016/0362-546x(88)90060-0; reference:[20] Tsinias, J.: Sufficient Lyapunov like conditions for stabilization.Math. Control Signals Syst. 2 (1989), 343-357. Zbl 0688.93048, MR 1015672, 10.1007/bf02551276; reference:[21] Zhang, W., Su, H., Cai, X., Guo, H.: A control Lyapunov approach to stabilization of affine nonlinear systems with bounded uncertain parameters.Circuits Systems Signal Process. 34 (2015), 341-352. MR 3299171, 10.1007/s00034-014-9848-8; reference:[22] Wang, H., Han, Z., Zhang, W., Xie, Q.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF.Nonlinear Analysis: Real World Appl. 10 (2009), 2842-2849. MR 2523247, 10.1016/j.nonrwa.2008.08.010; reference:[23] Wang, H., Han, Z., Zhang, W., Xie, Q.: Chaos control and synchronization of unified chaotic systems via linear control.J. Sound Vibration 320 (2009), 365-372. MR 2335867, 10.1016/j.jsv.2008.07.023

  4. 4
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: mr:MR2954321; reference:[1] K. Alexis, G. Nikolakopoulos, A. Tzes: Constrained-control of a quadrotor helicopter for trajectory tracking under wind-gust disturbances.In: Proc. 15th IEEE Mediterranean Electrotechnical Conference 2010, pp. 1411-1416.; reference:[2] K. Alexis, G. Nikolakopoulos, A. Tzes: Constrained optimal attitude control of a quadrotor helicopter subject to wind-gusts: Experimental studies.In: Proc. Amer. Control Conference 2010, pp. 4451-4455.; reference:[3] A. Benallegue, A. Mokhtari, L. Fridman: High-order sliding-mode observer for a quadrotor UAV.Internat. J. Robust and Nonlinear Control 18 (2008), 427-440. MR 2392132, 10.1002/rnc.1225; reference:[4] S. P. Bhat, D. S. Bernstein: Finite-time stability of homogeneous systems.In: Proc. Amer. Control Conference 1997, pp. 2513-2514.; reference:[5] S. P. Bhat, D. S. Bernstein: Continuous finite-time stabilization of the translational and rotational double integrators.IEEE Trans. Automat. Control 43 (1998), 678-682. Zbl 0925.93821, MR 1618028, 10.1109/9.668834; reference:[6] S. Bouabdallah, E. Murrieri, R. Siegwart: Design and control of an indoor micro quadrotor.In: Proc. IEEE International Conference on Robotics and Automation 2004, pp. 4393-4398.; reference:[7] S. Bouabdallah, R. Siegwart: Backstepping and sliding-mode techniques applied to an indoor micro quadrotors.In: Proc. IEEE International Conference on Robotics and Automation 2005, pp. 2247-2252.; reference:[8] P. Castillo, A. Dzul, R. Lozano: Real-time stabilization and tracking of a four-rotor mini-aircraft.IEEE Trans. Control Systems Technol. 12 (2004), 510-516. 10.1109/TCST.2004.825052; reference:[9] L. Derafa, L. Fridman, A. Benallegue, A. Ouldali: Super twisting control algorithm for the four rotors helicopter attitude tracking problem.In: Proc. 11th International Workshop on Variable Structure Systems 2010, pp. 62-67.; reference:[10] S. H. Ding, C. J. Qian, S. H. Li: Global stabilization of a class of feedforward systems with lower-order nonlinearities.IEEE Trans. Automat. Control 55 (2010), 691-696. MR 2654834, 10.1109/TAC.2009.2037455; reference:[11] S. H. Ding, C. J. Qian, S. H. Li: Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations.Internat. J. Robust and Nonlinear Control 21 (2010), 271-294. Zbl 1213.93182, MR 2791220, 10.1002/rnc.1591; reference:[12] Y. Feng, X. H. Yu, Z. H. Man: Non-singular terminal sliding mode control of rigid manipulators.Automatica 38 (2002), 2159-2167. Zbl 1015.93006, MR 2134882, 10.1016/S0005-1098(02)00147-4; reference:[13] M. T. Frye, S. H. Ding, C. J. Qian, S. H. Li: Global Finite-time stabilization of a PVTOL aircraft by output feedback.In: Proc. 48th IEEE Conference on Decision and Control 2009, pp. 2831-2836.; reference:[14] Y. G. Hong: Finite-time stablization and stabilizability of a class of controllable systems.Systems Control Lett. 46 (2002), 231-236. MR 2010240, 10.1016/S0167-6911(02)00119-6; reference:[15] Y. G. Hong, J. Huang, Y. S. Xu: On an output feedback finite-time stabilization problem.IEEE Trans. Automat. Control 46 (2001), 305-309. Zbl 0992.93075, MR 1814578, 10.1109/9.905699; reference:[16] Y. G. Hong, Y. S. Xu, J. Huang: Finite time control for robot manipulators.Systems Control Lett. 46 (2002), 243-253. Zbl 0994.93041, MR 2010242, 10.1016/S0167-6911(02)00130-5; reference:[17] A. Isidori: Nonlinear Control systems: An Introduction, Lecture Notes in Control and Information Sciences.Springer, Berlin 1985. MR 0895138; reference:[18] L. C. Lai, C. C. Yang, C. J. Wu: Time-optimal control of a hovering quad-rotor helicopter.J. Intell. and Robotic Systems 45 (2006), 115-135. 10.1007/s10846-005-9015-3; reference:[19] A. Levant: Sliding order and sliding accuracy in sliding mode control.Internat. J. of Control 58 (1993), 1247-1263. Zbl 0789.93063, MR 1250057, 10.1080/00207179308923053; reference:[20] S. H. Li, S. H. Ding, Q. Li: Global set stabilization of the spacecraft attitude using finite-time control technique.Internat. J. Control 82 (2009), 822-836. MR 2523551, 10.1080/00207170802342818; reference:[21] T. Madani, A. Benallegue: Control of a quadrotor mini-helicopter via full state backstepping technique.In: Proc. 45th IEEE Conference on Decision and Control 2006.; reference:[22] T. Madani, A. Benallegue: Backstepping control with exact 2-sliding mode estimation for a quadrotor unmanned aerial vehicle.In: Proc. International Conference on Intelligent Robots and Systems (2007), 141-146.; reference:[23] T. Madani, A. Benallegue: Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles.In: Proc. Amer. Control Confer. 2007, pp. 5887-5892.; reference:[24] T. Ménard, E. Moulay, W. Perruquetti: A global High-gain Finite-time Observer.IEEE Trans. Automat. Control 55 (2010), 1500-1506. MR 2668964, 10.1109/TAC.2010.2045698; reference:[25] V. Mistler, A. Benallegue, N. K. M. Sirdi: Exact Linearization and Noninteracting Control of a 4 Rotors Helicopter via Dynamic Feedback.In: Proc. 2001 IEEE International Workshop on Robot and Human Interactive Communication 2001.; reference:[26] W. Perruquetti, T. Floquet, E. Moulay: Finite time observers and secure communication.IEEE Trans. Automat. Control 53 (2008), 356-360. MR 2391590, 10.1109/TAC.2007.914264; reference:[27] A. Polyakov, A. Poznyak: Reaching time estimation for ``super-twisting" second order sliding mode controller via Lyapunov function designing.IEEE Tran. Automat. Control 54 (2009), 1951-1955. MR 2552835, 10.1109/TAC.2009.2023781; reference:[28] C. J. Qian, W. Lin: A continuous feedback approach to global strong stabilization of nonlinear systems.IEEE Trans. Automat. Control 46 (2001), 1061-1079. Zbl 1012.93053, MR 1842139, 10.1109/9.935058; reference:[29] Y. J. Shen, X. H. Xia: Semi-global finite-time observers for nonlinear systems.Automatica 44 (2008), 3152-3156. Zbl 1153.93332, MR 2531419, 10.1016/j.automatica.2008.05.015; reference:[30] A. R. Teel: A nonlinear small gain theorem for the analysis of control systems with saturation.IEEE Trans. Automat. Control 41 (1996), 1256-1270. Zbl 0863.93073, MR 1409471, 10.1109/9.536496