يعرض 1 - 10 نتائج من 22 نتيجة بحث عن '"WAVE equation"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: Beilina, Larisa, Ruas, Vitoriano

    وصف الملف: application/pdf

    العلاقة: mr:MR4541076; zbl:Zbl 07655740; reference:[1] Ammari, H., Hamdache, K.: Global existence and regularity of solutions to a system of nonlinear Maxwell equations.J. Math. Anal. Appl. 286 (2003), 51-63. Zbl 1039.35122, MR 2009617, 10.1016/S0022-247X(03)00415-3; reference:[2] Asadzadeh, M., Beilina, L.: On stabilized $P_1$ finite element approximation for time harmonic Maxwell's equations.Available at https://arxiv.org/abs/1906.02089v1Test (2019), 25 pages. MR 4141133; reference:[3] Asadzadeh, M., Beilina, L.: Convergence of stabilized $P_1$ finite element scheme for time harmonic Maxwell's equations.Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics and Statistics 328. Springer, Cham (2020), 33-43. Zbl 1446.65158, MR 4141133, 10.1007/978-3-030-48634-1_4; reference:[4] Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations.J. Comput. Phys. 109 (1993), 222-237 \99999DOI99999 10.1006/jcph.1993.1214 . Zbl 0795.65087, MR 1253460, 10.1006/jcph.1993.1214; reference:[5] Badia, S., Codina, R.: A nodal-based finite element approximation of the Maxwell problem suitable for singular solutions.SIAM J. Numer. Anal. 50 (2012), 398-417. Zbl 1247.78034, MR 2914268, 10.1137/110835360; reference:[6] Beilina, L.: Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell's system.Cent. Eur. J. Math. 11 (2013), 702-733. Zbl 1267.78044, MR 3015394, 10.2478/s11533-013-0202-3; reference:[7] Beilina, L.: WavES (Wave Equations Solutions).Available at https://waves24.comTest/.; reference:[8] Beilina, L., Cristofol, M., Niinimäki, K.: Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations.Inverse Probl. Imaging 9 (2015), 1-25. Zbl 1308.35296, MR 3305884, 10.3934/ipi.2015.9.1; reference:[9] Beilina, L., Grote, M. J.: Adaptive hybrid finite element/difference method for Maxwell's equations.TWMS J. Pure Appl. Math. 1 (2010), 176-197. Zbl 1236.78028, MR 2766623; reference:[10] Beilina, L., Ruas, V.: An explicit $P_1$ finite-element scheme for Maxwell's equations with constant permittivity in a boundary neighborhood.Available at https://arxiv.org/abs/1808.10720v4Test (2020), 38 pages.; reference:[11] Beilina, L., Ruas, V.: Convergence of explicit $P_1$ finite-element solutions to Maxwell's equations.Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics & Statistics 328. Springer, Cham (2020), 91-103. Zbl 07240119, MR 4141136, 10.1007/978-3-030-48634-1_7; reference:[12] Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B.: Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements.J. Comput. Appl. Math. 289 (2015), 371-391. Zbl 1332.78020, MR 3350783, 10.1016/j.cam.2014.11.055; reference:[13] Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementary, Edge Elements.Electromagnetism, Vol. 2 Academic Press, New York (1998). Zbl 0945.78001, MR 1488417; reference:[14] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15. Springer, New York (1991). Zbl 0788.73002, MR 1115205, 10.1007/978-1-4612-3172-1; reference:[15] Araujo, J. H. Carneiro de, Gomes, P. D., Ruas, V.: Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow.J. Comput. Appl. Math. 234 (2010), 2562-2577. Zbl 1425.76025, MR 2645211, 10.1016/j.cam.2010.03.025; reference:[16] Chen, C., Wahl, W. von.: Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung.J. Reine Angew. Math. 337 (1982), 77-112 German \99999DOI99999 10.1515/crll.1982.337.77 . Zbl 0486.35053, MR 0676043; reference:[17] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[18] P. Ciarlet, Jr.: Augmented formulations for solving Maxwell equations.Comput. Methods Appl. Mech. Eng. 194 (2005), 559-586. Zbl 1063.78018, MR 2105182, 10.1016/j.cma.2004.05.021; reference:[19] P. Ciarlet, Jr., E. Jamelot: Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries.J. Comput. Phys. 226 (2007), 1122-1135. Zbl 1128.78002, MR 2356870, 10.1016/j.jcp.2007.05.029; reference:[20] Cohen, G., Monk, P.: Gauss point mass lumping schemes for Maxwell's equations.Numer. Methods Partial Differ. Equations 14 (1998), 63-88. Zbl 0891.65130, MR 1601785, 10.1002/(SICI)1098-2426(199801)14:13.0.CO;2-J; reference:[21] Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains: A rehabilitation of nodal finite elements.Numer. Math. 93 (2002), 239-277. Zbl 1019.78009, MR 1941397, 10.1007/s002110100388; reference:[22] Elmkies, A., Joly, P.: Edge finite elements and mass lumping for Maxwell's equations: The 2D case.C. R. Acad. Sci., Paris, Sér. I 324 (1997), 1287-1293 French. Zbl 0877.65081, MR 1456303, 10.1016/S0764-4442(99)80415-7; reference:[23] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms.Springer Series in Computational Mathematics 5. Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5; reference:[24] Jamelot, E.: Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: Thèse doctorale.L'École Polytechnique, Paris (2005), French. Zbl 1185.65006; reference:[25] Joly, P.: Variational methods for time-dependent wave propagation problems.Topics in Computational Wave Propagation: Direct and Inverse Problems Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264. Zbl 1049.78028, MR 2032871, 10.1007/978-3-642-55483-4_6; reference:[26] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990). Zbl 0708.65106, MR 1066462; reference:[27] Malmerg, J. B.: A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system.Inverse Problems and Applications Springer Proceedings in Mathematics & Statistics 120. Springer, Cham (2015), 43-53. Zbl 1319.78014, MR 3343199, 10.1007/978-3-319-12499-5_3; reference:[28] Malmberg, J. B.: Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem: Doctoral Thesis.University of Gothenburg, Gothenburg (2017).; reference:[29] Malmberg, J. B., Beilina, L.: Iterative regularization and adaptivity for an electromagnetic coefficient inverse problem.AIP Conf. Proc. 1863 (2017), Article ID 370002. 10.1063/1.4992549; reference:[30] Malmberg, J. B., Beilina, L.: An adaptive finite element method in quantitative reconstruction of small inclusions from limited observations.Appl. Math. Inf. Sci. 12 (2018), 1-19. MR 3747879, 10.18576/amis/120101; reference:[31] Monk, P.: Finite Element Methods for Maxwell's Equations.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). Zbl 1024.78009, MR 2059447, 10.1093/acprof:oso/9780198508885.001.0001; reference:[32] Nedelec, J.-C.: Mixed finite elements in $\mathbb R^3$.Numer. Math. 35 (1980), 315-341. Zbl 0419.65069, MR 0592160, 10.1007/BF01396415; reference:[33] Patsakos, G.: Equivalence of the Maxwell and wave equations.Am. J. Phys. 47 (1979), 698-699. 10.1119/1.11745; reference:[34] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.: Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method.SIAM J. Sci. Comput. 36 (2014), B273--B293. Zbl 1410.78018, MR 3199422, 10.1137/130924962; reference:[35] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.: Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm.SIAM J. Imaging Sci. 8 (2015), 757-786. Zbl 1432.35259, MR 3327354, 10.1137/140972469; reference:[36] Wang, L.: On Korn's inequality.J. Comput. Math. 21 (2003), 321-324. Zbl 1151.74311, MR 1978636; reference:[37] Zuo, L., Hou, Y.: Numerical analysis for the mixed Navier-Stokes and Darcy problem with the Beavers-Joseph interface condition.Numer. Methods Partial Differ. Equations 31 (2015), 1009-1030. Zbl 1329.76194, MR 3343597, 10.1002/num.21933

  2. 2
    دورية أكاديمية

    المؤلفون: Luo, Yuesheng, Xing, Ruixue, Li, Xiaole

    وصف الملف: application/pdf

    العلاقة: mr:MR4299883; zbl:07396176; reference:[1] Brango, C. Banquet: The symmetric regularized-long-wave equation: Well-posedness and nonlinear stability.Physica D 241 (2012), 125-133. Zbl 1252.35130, 10.1016/j.physd.2011.10.007; reference:[2] Bhardwaj, D., Shankar, R.: A computational method for regularized long wave equation.Comput. Math. Appl. 40 (2000), 1397-1404. Zbl 0965.65108, MR 1803919, 10.1016/S0898-1221(00)00248-0; reference:[3] Bhowmik, S. K., Karakoc, S. B. G.: Numerical approximation of the generalized regularized long wave equation using Petrov-Galerkin finite element method.Numer. Methods Partial Differ. Equations 35 (2019), 2236-2257. Zbl 1431.65169, MR 4022940, 10.1002/num.22410; reference:[4] Cai, J.: Multisymplectic numerical method for the regularized long-wave equation.Comput. Phys. Commun. 180 (2009), 1821-1831. Zbl 1197.65144, MR 2678455, 10.1016/j.cpc.2009.05.009; reference:[5] Chegini, N. G., Salaripanah, A., Mokhtari, R., Isvand, D.: Numerical solution of the regularized long wave equation using nonpolynomial splines.Nonlinear Dyn. 69 (2012), 459-471. Zbl 1258.65076, MR 2929885, 10.1007/s11071-011-0277-y; reference:[6] Chertovskih, R., Chian, A. C.-L., Podvigina, O., Rempel, E. L., Zheligovsky, V.: Existence, uniqueness, and analyticity of space-periodic solutions to the regularized long-wave equation.Adv. Differ. Equ. 19 (2014), 725-754. Zbl 1292.35227, MR 3252900; reference:[7] Dogan, A.: Numerical solution of RLW equation using linear finite elements within Galerkin's method.Appl. Math. Modelling 26 (2002), 771-783. Zbl 1016.76046, 10.1016/S0307-904X(01)00084-1; reference:[8] Eilbeck, J. C., McGuire, G. R.: Numerical study of the regularized long-wave equation. I: Numerical methods.J. Comput. Phys. 19 (1975), 43-57. Zbl 0325.65054, MR 0400907, 10.1016/0021-9991(75)90115-1; reference:[9] Fang, S., Guo, B., Qiu, H.: The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations.Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 61-68. Zbl 1221.35362, MR 2458711, 10.1016/j.cnsns.2007.07.001; reference:[10] Gardner, L. R. T., Gardner, G. A., Dag, I.: A $B$-spline finite element method for the regularized long wave equation.Commun. Numer. Methods Eng. 11 (1995), 59-68. Zbl 0819.65125, MR 1312879, 10.1002/cnm.1640110109; reference:[11] Guo, L., Chen, H.: $H^1$-Galerkin mixed finite element method for the regularized long wave equation.Computing 77 (2006), 205-221. Zbl 1098.65096, MR 2214448, 10.1007/s00607-005-0158-7; reference:[12] Guo, B., Shang, Y.: Approximate inertial manifolds to the generalized symmetric regularized long wave equations with damping term.Acta Math. Appl. Sin., Engl. Ser. 19 (2003), 191-204. Zbl 1059.35105, MR 2011482, 10.1007/s10255-003-0095-1; reference:[13] Hammad, D. A., El-Azab, M. S.: Chebyshev-Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation.Appl. Math. Comput. 285 (2016), 228-240. Zbl 1410.65395, MR 3494425, 10.1016/j.amc.2016.03.033; reference:[14] Hu, J., Zheng, K.: Two conservative difference schemes for the generalized Rosenau equation.Bound. Value Probl. 2010 (2010), Article ID 543503, 18 pages. Zbl 1187.65090, MR 2600713, 10.1155/2010/543503; reference:[15] Irk, D., Keskin, P.: Quadratic trigonometric $B$-spline Galerkin methods for the regularized long wave equation.J. Appl. Anal. Comput. 7 (2017), 617-631. MR 3602441, 10.11948/2017038; reference:[16] Irk, D., Yildiz, P. Keskin, Görgülü, M. Zorşahin: Quartic trigonometric $B$-spline algorithm for numerical solution of the regularized long wave equation.Turk. J. Math. 43 (2019), 112-125. Zbl 1417.65172, MR 3909279, 10.3906/mat-1804-55; reference:[17] Karakoc, S. B. G., Yagmurlu, N. M., Ucar, Y.: Numerical approximation to a solution of the modified regularized long wave equation using quintic $B$-splines.Bound. Value Probl. 2013 (2013), Article ID 27, 17 pages. Zbl 1284.65142, MR 3110753, 10.1186/1687-2770-2013-27; reference:[18] Kumar, R., Baskar, S.: $B$-spline quasi-interpolation based numerical methods for some Sobolev type equations.J. Comput. Appl. Math. 292 (2016), 41-66. Zbl 1329.65236, MR 3392380, 10.1016/j.cam.2015.06.015; reference:[19] Lin, B.: A nonpolynomial spline scheme for the generalized regularized long wave equation.Stud. Appl. Math. 132 (2014), 160-182. Zbl 1291.65302, MR 3167092, 10.1111/sapm.12022; reference:[20] Lin, B.: Parametric spline solution of the regularized long wave equation.Appl. Math. Comput. 243 (2014), 358-367. Zbl 1336.65176, MR 3244483, 10.1016/j.amc.2014.05.133; reference:[21] Lin, B.: Non-polynomial splines method for numerical solutions of the regularized long wave equation.Int. J. Comput. Math. 92 (2015), 1591-1607. Zbl 1317.65054, MR 3340634, 10.1080/00207160.2014.950254; reference:[22] Luo, Y., Li, X., Guo, C.: Fourth-order compact and energy conservative scheme for solving nonlinear Klein-Gordon equation.Numer. Methods Partial Differ. Equations 33 (2017), 1283-1304. Zbl 1377.65119, MR 3652187, 10.1002/num.22143; reference:[23] Oruç, Ö., Bulut, F., Esen, A.: Numerical solutions of regularized long wave equation by Haar wavelet method.Mediterr. J. Math. 13 (2016), 3235-3253. Zbl 1354.65194, MR 3554305, 10.1007/s00009-016-0682-z; reference:[24] Peregrine, D. H.: Calculations of the development of an undular bore.J. Fluid Mech. 25 (1966), 321-330. 10.1017/S0022112066001678; reference:[25] Peregrine, D. H.: Long waves on a beach.J. Fluid Mech. 27 (1967), 815-827. Zbl 0163.21105, 10.1017/S0022112067002605; reference:[26] Pindza, E., Maré, E.: Solving the generalized regularized long wave equation using a distributed approximating functional method.Int. J. Comput. Math. 2014 (2014), Article ID 178024, 12 pages. 10.1155/2014/178024; reference:[27] Raslan, K. R.: A computational method for the regularized long wave (RLW) equation.Appl. Math. Comput. 167 (2005), 1101-1118. Zbl 1082.65582, MR 2169754, 10.1016/j.amc.2004.06.130; reference:[28] Rouatbi, A., Achouri, T., Omrani, K.: High-order conservative difference scheme for a model of nonlinear dispersive equations.Comput. Appl. Math. 37 (2018), 4169-4195. Zbl 1402.65090, MR 3848530, 10.1007/s40314-017-0567-1; reference:[29] Salih, H., Tawfiq, L. N. M., Yahya, Z. R., Zin, S. Mat: Solving modified regularized long wave equation using collocation method.J. Phys., Conf. Ser. 1003 (2018), Article ID 012062, 9 pages. 10.1088/1742-6596/1003/1/012062; reference:[30] Shang, Y., Guo, B.: Exponential attractor for the generalized symmetric regularized long wave equation with damping term.Appl. Math. Mech., Engl. Ed. 26 (2005), 283-291. Zbl 1144.76304, MR 2132120, 10.1007/BF02440077; reference:[31] Shao, X., Xue, G., Li, C.: A conservative weighted finite difference scheme for regularized long wave equation.Appl. Math. Comput. 219 (2013), 9202-9209. Zbl 1288.65125, MR 3047814, 10.1016/j.amc.2013.03.068; reference:[32] Soliman, A. A.: Numerical scheme based on similarity reductions for the regularized long wave equation.Int. J. Comput. Math. 81 (2004), 1281-1288. Zbl 1063.65086, MR 2173459, 10.1080/00207160412331272135; reference:[33] Wang, B., Sun, T., Liang, D.: The conservative and fourth-order compact finite difference schemes for regularized long wave equation.J. Comput. Appl. Math. 356 (2019), 98-117. Zbl 1419.65033, MR 3915392, 10.1016/j.cam.2019.01.036; reference:[34] Xie, S., Kim, S., Woo, G., Yi, S.: A numerical method for the generalized regularized long wave equation using a reproducing kernel function.SIAM J. Sci. Comput. 30 (2008), 2263-2285. Zbl 1181.65125, MR 2429465, 10.1137/070683623; reference:[35] Yan, J., Lai, M.-C., Li, Z., Zhang, Z.: New conservative finite volume element schemes for the modified regularized long wave equation.Adv. Appl. Math. Mech. 9 (2017), 250-271. MR 3598526, 10.4208/aamm.2014.m888; reference:[36] Zhang, L.: A finite difference scheme for generalized regularized long-wave equation.Appl. Math. Comput. 168 (2005), 962-972. Zbl 1080.65079, MR 2171754, 10.1016/j.amc.2004.09.027; reference:[37] Zheng, K., Hu, J.: High-order conservative Crank-Nicolson scheme for regularized long wave equation.Adv. Difference Equ. 2013 (2013), Article ID 287, 12 pages. Zbl 1444.65051, MR 3337283, 10.1186/1687-1847-2013-287; reference:[38] Zhou, Y.: Applications of Discrete Functional Analysis to the Finite Difference Method.International Academic Publishers, Beijing (1991). Zbl 0732.65080, MR 1133399

  3. 3
    دورية أكاديمية

    المؤلفون: Wang, Xiao-Rui, Xu, Gen-Qi

    وصف الملف: application/pdf

    العلاقة: mr:MR4042434; zbl:07144734; reference:[1] Cox, S., Zuazua, E.: The rate at which energy decays in a damped string.Commun. Partial Differ. Equations 19 (1994), 213-143. Zbl 0818.35072, MR 1257004, 10.1080/03605309408821015; reference:[2] Fu, Q. H., Xu, G. Q.: Exponential stabilization of 1-d wave equation with distributed disturbance.WSEAS Trans. Math. 14 (2015), 192-201.; reference:[3] Guo, W., Guo, B.-Z., Shao, Z.-C.: Parameter estimation and stabilization for a wave equation with boundary output harmonic disturbance and non-collocated control.Int. J. Robust Nonlinear Control 21 (2011), 1297-1321. Zbl 1244.74038, MR 2840009, 10.1002/rnc.1650; reference:[4] Guo, B.-Z., Jin, F.-F.: The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance.Automatica 49 (2013), 2911-2918. Zbl 1364.93637, MR 3084483, 10.1016/j.automatica.2013.06.018; reference:[5] Guo, B.-Z., Kang, W.: The Lyapunov approach to boundary stabilization of an anti-stable one-dimensional wave equation with boundary disturbance.Int. J. Robust Nonlinear Control 24 (2014), 54-69. Zbl 1278.93199, MR 3149286, 10.1002/rnc.2874; reference:[6] Guo, B.-Z., Liu, J.-J.: Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional Schrödinger equation subject to boundary control matched disturbance.Int. J. Robust. Nonlinear Control 24 (2014), 2194-2212. Zbl 1302.93060, MR 3271988, 10.1002/rnc.2977; reference:[7] Guo, B.-Z., Liu, J.-J., Al-Fhaid, A. S., Mahmood, M. Arshad, Younas, A. M. M., Asiri, A.: The active disturbance rejection control approach to stabilisation of coupled heat and ODE system subject to boundary control matched disturbance.Int. J. Control 88 (2015), 1554-1564. Zbl 1337.93078, MR 3371068, 10.1080/00207179.2015.1010179; reference:[8] Guo, B.-Z., Zhou, H.-C.: The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance.IEEE Trans. Autom. Control 60 (2015), 143-157. Zbl 1360.93545, MR 3299420, 10.1109/TAC.2014.2335511; reference:[9] Immonen, E., Pohjolainen, S.: Feedback and feedforward output regulation of bounded uniformly continuous signals for infinite-dimensional systems.SIAM J. Control Optim. 45 (2006), 1714-1735. Zbl 1127.93029, MR 2272163, 10.1137/050623000; reference:[10] Jayawardhana, B., Weiss, G.: State convergence of passive nonlinear systems with an $L^2$ input.IEEE Trans. Autom. Control 54 (2009), 1723-1727. Zbl 1367.93435, MR 2535777, 10.1109/TAC.2009.2020661; reference:[11] Jin, F.-F., Guo, B.-Z.: Lyapunov approach to output feedback stabilization for the Euler-Bernoulli equation with boundary input disturbance.Automatica 52 (2015), 95-102. Zbl 1309.93122, MR 3310818, 10.1016/j.automatica.2014.10.123; reference:[12] Ke, Z., Logemann, H., Rebarber, R.: Approximate tracking and disturbance rejection for stable infinite-dimensional systems using sampled-data low-gain control.SIAM J. Control Optim. 48 (2009), 641-671. Zbl 1194.93043, MR 2486087, 10.1137/080716517; reference:[13] Krstic, M.: Adaptive control of an anti-stable wave PDE.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 17 (2010), 853-882. Zbl 1219.93055, MR 2757916; reference:[14] Nakao, M.: Decay of solutions of the wave equation with a local nonlinear dissipation.Math. Ann. 305 (1996), 403-417. Zbl 0856.35084, MR 1397430, 10.1007/BF01444231; reference:[15] Rebarber, R., Weiss, G.: Internal model based tracking and disturbance rejection for stable well-posed systems.Automatica 39 (2003), 1555-1569. Zbl 1028.93012, MR 2143463, 10.1016/S0005-1098(03)00192-4; reference:[16] Shang, Y., Xu, G.: Dynamic control of an Euler-Bernoulli equation with time-delay and disturbance in the boundary control.Int. J. Control 92 (2019), 27-41. Zbl 1415.93117, MR 3928477, 10.1080/00207179.2017.1334264; reference:[17] Weiss, G.: Admissibility of unbounded control operators.SIAM J. Control Optimization 27 (1989), 527-545. Zbl 0685.93043, MR 0993285, 10.1137/0327028; reference:[18] Xie, Y. R., Xu, G. Q.: Stabilization of a wave equation with a tip mass based on disturbance observer of time-varying gain.J. Dyn. Control Syst. 23 (2017), 667-677. Zbl 1372.35175, MR 3688888, 10.1007/s10883-016-9349-0; reference:[19] Xu, G. Q.: Exponential stabilization of conservation systems with interior disturbance.J. Math. Anal. Appl. 436 (2016), 764-781. Zbl 1330.93210, MR 3446978, 10.1016/j.jmaa.2015.11.079; reference:[20] Zhao, Z., Guo, B.: Active disturbance rejection control to stabilize one-dimensional wave equation with interior domain anti-damping and boundary disturbance.Control Theory Appl. 30 (2013), 1553-1563. Zbl 1299.93247, 10.7641/CTA.2013.30966

  4. 4
    مؤتمر

    المؤلفون: Esquivel-Avila, Jorge A.

    وصف الملف: application/pdf

    العلاقة: reference:[1] Esquivel-Avila, J.: Remarks on the qualitative behavior of the undamped Klein-Gordon equation., Math. Meth. Appl. Sci. (2017) 9 pp., DOI:10.1002/mma.4598. MR 3745359, 10.1002/mma.4598; reference:[2] Esquivel-Avila, J.: Nonexistence of global solutions of abstract wave equations with high energies., J. of Inequalities and Applications, 2017:268 (2017) 14 pp., DOI 10.1186/s13660017-1546-1. MR 3716687, 10.1186/s13660-017-1546-1; reference:[3] Ball, J.: Finite blow up in nonlinear problems., in Nonlinear Evolution Equations, M. G. Crandall Editor, Academic Press, 1978, pp. 189-205. MR 0513819; reference:[4] Ball, J.: Remarks on blow up and nonexistence theorems for nonlinear evolution equations., Quart. J. Math. Oxford 28 (1977) 473-486. MR 0473484, 10.1093/qmath/28.4.473; reference:[5] Willem, M.: Minimax Theorems., Progress in Nonlinear Differential Equations and Applications, Vol. 24, Birkh\"auser, 1996. MR 1400007; reference:[6] Payne, L. E., Sattinger, D. H.: Saddle points and instability of nonlinear hyperbolic equations., Israel J. Math. 22 (1975) 273-303. MR 0402291, 10.1007/BF02761595; reference:[7] Gazzola, F., Squassina, M.: Global solutions and finite time blow up for damped semilinear wave equations., Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 185-207. MR 2201151; reference:[8] Esquivel-Avila, J.: Blow up and asymptotic behavior in a nondissipative nonlinear wave equation., Appl. Anal. 93 (2014) 1963-1978. MR 3227792, 10.1080/00036811.2013.859250; reference:[9] Wang, Y.: A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrary positive initial energy., Proc. Amer. Math. Soc. 136 (2008) 3477-3482. MR 2415031, 10.1090/S0002-9939-08-09514-2; reference:[10] Korpusov, M. O.: Blowup of a positive-energy solution of model wave equations in nonlinear dynamics., Theoret. and Math. Phys. 171 421-434 (2012). MR 3168856, 10.1007/s11232-012-0041-6; reference:[11] Kutev, N., Kolkovska, N., Dimova, M.: Sign-preserving functionals and blow up to Klein-Gordon equation with arbitrary high energy., Appl. Anal. 95 (2016) 860-873. MR 3475853, 10.1080/00036811.2015.1038994; reference:[12] Dimova, M., Kolkovska, N., Kutev, N.: Revised concavity method and application to Klein-Gordon equation., Filomat 30 (2016) 831-839. MR 3498681, 10.2298/FIL1603831D; reference:[13] Alinhac, S.: Blow up for nonlinear hyperbolic equations., Progress in Nonlinear Differential Equations and Applications 17, Birkh\"auser, 1995. MR 1339762; reference:[14] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{tt} = −Au + \Cal F (u)$. Trans. Am. Math. Soc. 192 (1974) 1-21. MR 0344697; reference:[15] Wang, S., Xuek, H.: Global solution for a generalized Boussinesq equation., Appl. Math. Comput. 204 (2008) 130-136. MR 2458348; reference:[16] Xu, R., Liu, Y.: Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations., J. Math. Anal. Appl. 359 (2009) 739-751. MR 2546791, 10.1016/j.jmaa.2009.06.034; reference:[17] Kutev, N., Kolkovska, N., Dimova, M.: Nonexistence of global solutions to new ordinary differential inequality and applications to nonlinear dispersive equations., Math. Meth. Appl. Sci.39 (2016) 2287-2297. MR 3510159, 10.1002/mma.3639; reference:[18] Kutev, N., Kolkovska, N., Dimova, M.: Finite time blow up of the solutions to Boussinesq equation with linear restoring force and arbitrary positive energy., Acta Math. Scientia 36B (2016)881-890. MR 3479262

  5. 5
    مؤتمر

    المؤلفون: Slavík, Jakub

    وصف الملف: application/pdf

    العلاقة: reference:[1] Belleri, V., Pata, V.: Attractors for semilinear strongly damped wave equations on $\Bbb R^3$., Discrete Contin. Dynam. Systems, 7 (2001), pp. 719–735. MR 1849655, 10.3934/dcds.2001.7.719; reference:[2] Carvalho, A. N., Cholewa, J. W.: Attractors for strongly damped wave equations with critical nonlinearities., Pacific J. Math., 207 (2002), pp. 287–310. MR 1972247, 10.2140/pjm.2002.207.287; reference:[3] Cholewa, J. W., Dlotko, T.: Strongly damped wave equation in uniform spaces., Nonlinear Anal., 64 (2006), pp. 174–187. MR 2183836, 10.1016/j.na.2005.06.021; reference:[4] Conti, M., Pata, V., Squassina, M.: Strongly damped wave equations on $\Bbb R^3$ with critical nonlinearities., Commun. Appl. Anal., 9 (2005), pp. 161–176. MR 2168756; reference:[5] Plinio, F. Di, Pata, V., Zelik, S.: On the strongly damped wave equation with memory., Indiana Univ. Math. J., 57 (2008), pp. 757–780. MR 2414334, 10.1512/iumj.2008.57.3266; reference:[6] Ghidaglia, J.-M., Marzocchi, A.: Longtime behaviour of strongly damped wave equations, global attractors and their dimension., SIAM J. Math. Anal., 22 (1991), pp. 879–895. MR 1112054, 10.1137/0522057; reference:[7] Grasselli, M., Pražák, D., Schimperna, G.: Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories., J. Differential Equations, 249 (2010), pp. 2287–2315. MR 2718659, 10.1016/j.jde.2010.06.001; reference:[8] Kalantarov, V., Zelik, S.: Finite-dimensional attractors for the quasi-linear strongly damped wave equation., J. Differential Equations, 247 (2009), pp. 1120–1155. MR 2531174, 10.1016/j.jde.2009.04.010; reference:[9] Li, H., Zhou, S.: Kolmogorov ε-entropy of attractor for a non-autonomous strongly damped wave equation., Commun. Nonlinear Sci. Numer. Simul., 17 (2012), pp. 3579–3586. MR 2913994, 10.1016/j.cnsns.2012.01.025; reference:[10] Michálek, M., Pražák, D., HASH(0x2ff9058), Slavík, J.: Semilinear damped wave equation in locally uniform spaces., Commun. Pure Appl. Anal., 16 (2017), pp. 1673–1695. MR 3661796, 10.3934/cpaa.2017080; reference:[11] Pata, V., Squassina, M.: On the strongly damped wave equation., Comm. Math. Phys., 253 (2005), pp. 511–533. MR 2116726, 10.1007/s00220-004-1233-1; reference:[12] Pražák, D.: On finite fractal dimension of the global attractor for the wave equation with nonlinear damping., J. Dynam. Differential Equations, 14 (2002), pp. 763–776. MR 1940102, 10.1023/A:1020756426088; reference:[13] Roubíček, T.: Nonlinear partial differential equations with applications., Birkhäuser/Springer Basel AG, Basel, International Series of Numerical Mathematics 153 (2013). MR 3014456; reference:[14] Savostianov, A.: Infinite energy solutions for critical wave equation with fractional damping in unbounded domains., Nonlinear Anal., 136 (2016), pp. 136–167. MR 3474408, 10.1016/j.na.2016.02.016; reference:[15] Yang, M., Sun, C.: Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity., Trans. Amer. Math. Soc., 361 (2009), pp. 1069–1101. MR 2452835, 10.1090/S0002-9947-08-04680-1; reference:[16] Yang, M., Sun, C.: Exponential attractors for the strongly damped wave equations., Nonlinear Anal. Real World Appl., 11 (2010), pp. 913–919. MR 2571264, 10.1016/j.nonrwa.2009.01.022; reference:[17] Zelik, S. V.: The attractor for a nonlinear hyperbolic equation in the unbounded domain., Discrete Contin. Dynam. Systems, 7 (2001), pp. 593–641. MR 1815770, 10.3934/dcds.2001.7.593

  6. 6
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: mr:MR3407597; zbl:Zbl 06537684; reference:[1] Aida, S., Kusuoka, S., Stroock, D.: On the support of Wiener functionals.Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics. Proc. Conf., Sanda and Kyoto, Japan, 1990 K. D. Elworthy et al. Pitman Res. Notes Math. Ser. 284 Longman Scientific & Technical, Harlow, Essex; John Wiley & Sons, New York (1993), 3-34. Zbl 0790.60047, MR 1354161; reference:[2] Arnold, L., Kliemann, W.: On unique ergodicity for degenerate diffusions.Stochastics 21 (1987), 41-61. Zbl 0617.60076, MR 0899954, 10.1080/17442508708833450; reference:[3] Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: A convergent finite-element-based discretization of the stochastic Landau-{L}ifshitz-{G}ilbert equation.IMA J. Numer. Anal. 34 (2014), 502-549. Zbl 1298.65012, MR 3194798, 10.1093/imanum/drt020; reference:[4] Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: Stochastic Ferromagnetism. Analysis and Numerics.De Gruyter Studies in Mathematics 58 De Gruyter, Berlin (2014). Zbl 1288.82001, MR 3157451; reference:[5] Baňas, Ľ., Prohl, A., Schätzle, R.: Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii.Numer. Math. 115 (2010), 395-432. Zbl 1203.65174, MR 2640052, 10.1007/s00211-009-0282-y; reference:[6] Bartels, S., Lubich, C., Prohl, A.: Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers.Math. Comput. 78 (2009), 1269-1292. Zbl 1198.65178, MR 2501050, 10.1090/S0025-5718-09-02221-2; reference:[7] Arous, G. Ben, Grădinaru, M.: Hölder norms and the support theorem for diffusions.C. R. Acad. Sci., Paris, Sér. I 316 French (1993), 283-286. MR 1205200; reference:[8] Arous, G. Ben, Grădinaru, M., Ledoux, M.: Hölder norms and the support theorem for diffusions.Ann. Inst. Henri Poincaré, Probab. Stat. 30 (1994), 415-436. MR 1288358; reference:[9] Brzeźniak, Z., Ondreját, M.: Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces.Ann. Probab. 41 (2013), 1938-1977. Zbl 1286.60058, MR 3098063, 10.1214/11-AOP690; reference:[10] Brzeźniak, Z., Ondreját, M.: Weak solutions to stochastic wave equations with values in Riemannian manifolds.Commun. Partial Differ. Equations 36 (2011), 1624-1653. Zbl 1238.60073, MR 2825605, 10.1080/03605302.2011.574243; reference:[11] Brzeźniak, Z., Ondreját, M.: Strong solutions to stochastic wave equations with values in Riemannian manifolds.J. Funct. Anal. 253 (2007), 449-481. Zbl 1141.58019, MR 2370085, 10.1016/j.jfa.2007.03.034; reference:[12] Cabaña, E. M.: On barrier problems for the vibrating string.Z. Wahrscheinlichkeitstheor. Verw. Geb. 22 (1972), 13-24. Zbl 0214.16801, MR 0322974, 10.1007/BF00538902; reference:[13] Carmona, R., Nualart, D.: Random nonlinear wave equations: propagation of singularities.Ann. Probab. 16 (1988), 730-751. Zbl 0643.60045, MR 0929075, 10.1214/aop/1176991784; reference:[14] Carmona, R., Nualart, D.: Random nonlinear wave equations: smoothness of the solutions.Probab. Theory Relat. Fields 79 (1988), 469-508. Zbl 0635.60073, MR 0966173, 10.1007/BF00318783; reference:[15] Chow, P.-L.: Stochastic wave equations with polynomial nonlinearity.Ann. Appl. Probab. 12 (2002), 361-381. Zbl 1017.60071, MR 1890069, 10.1214/aoap/1015961168; reference:[16] Prato, G. Da, Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems.London Mathematical Society Lecture Note Series 229 Cambridge Univ. Press, Cambridge (1996). Zbl 0849.60052, MR 1417491; reference:[17] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1992). Zbl 0761.60052, MR 1207136; reference:[18] Dalang, R. C., Frangos, N. E.: The stochastic wave equation in two spatial dimensions.Ann. Probab. 26 (1998), 187-212. Zbl 0938.60046, MR 1617046, 10.1214/aop/1022855416; reference:[19] Dalang, R. C., Lévêque, O.: Second-order linear hyperbolic {SPDE}s driven by isotropic Gaussian noise on a sphere.Ann. Probab. 32 (2004), 1068-1099. Zbl 1046.60058, MR 2044674, 10.1214/aop/1079021472; reference:[20] Diaconis, P., Freedman, D.: On the hit and run process.University of California Berkeley, Statistics Technical Report no. 497, http://stat-reports.lib.berkeley.edu/accessPages/497.htmlTest (1997).; reference:[21] Ginibre, J., Velo, G.: The Cauchy problem for the $ O(N), \Bbb C P(N-1),$ and $G_{\Bbb C}(N, p)$ models.Ann. Phys. 142 (1982), 393-415. MR 0678488, 10.1016/0003-4916(82)90077-X; reference:[22] Gyöngy, I., Pröhle, T.: On the approximation of stochastic differential equation and on Stroock-{V}aradhan's support theorem.Comput. Math. Appl. 19 (1990), 65-70. Zbl 0711.60051, MR 1026782, 10.1016/0898-1221(90)90082-U; reference:[23] Hörmander, L.: Hypoelliptic second order differential equations.Acta Math. 119 (1967), 147-171. Zbl 0156.10701, MR 0222474, 10.1007/BF02392081; reference:[24] Ichihara, K., Kunita, H.: A classification of the second order degenerate elliptic operators and its probabilistic characterization.Z. Wahrscheinlichkeitstheor. Verw. Geb. 30 (1974), 235-254. Zbl 0326.60097, MR 0381007, 10.1007/BF00533476; reference:[25] Ichihara, K., Kunita, H.: Supplements and corrections to the paper: ``A classification of the second order degenerate elliptic operators and its probabilistic characterization''.Z. Wahrscheinlichkeitstheor. Verw. Geb. 39 (1977), 81-84. Zbl 0382.60069, MR 0488328, 10.1007/BF01844875; reference:[26] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes.North-Holland Mathematical Library 24 North-Holland; Publishing Co. Tokyo: Kodansha, Amsterdam (1989). Zbl 0684.60040, MR 1011252; reference:[27] Karczewska, A., Zabczyk, J.: Stochastic {PDE}'s with function-valued solutions.Infinite Dimensional Stochastic Analysis. Proceedings of the Colloquium, Amsterdam, Netherlands, 1999 P. Clément et al. Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet. 52 Royal Netherlands Academy of Arts and Sciences, Amsterdam (2000), 197-216. Zbl 0990.60065, MR 1832378; reference:[28] Karczewska, A., Zabczyk, J.: A note on stochastic wave equations.Evolution Equations and Their Applications in Physical and Life Sciences. Proc. Conf., Germany, 1999 G. Lumer et al. Lecture Notes in Pure and Appl. Math. 215 Marcel Dekker, New York (2001), 501-511. Zbl 0978.60066, MR 1818028; reference:[29] Marcus, M., Mizel, V. J.: Stochastic hyperbolic systems and the wave equation.Stochastics Stochastics Rep. 36 (1991), 225-244. Zbl 0739.60059, MR 1128496, 10.1080/17442509108833720; reference:[30] Maslowski, B., Seidler, J., Vrkoč, I.: Integral continuity and stability for stochastic hyperbolic equations.Differ. Integral Equ. 6 (1993), 355-382. Zbl 0777.35096, MR 1195388; reference:[31] Matskyavichyus, V.: The support of the solution of a stochastic differential equation.Lith. Math. J. 26 (1986), 91-98 Russian English translation Lith. Math. J. 26 57-62 (1986). MR 0847207; reference:[32] Mattingly, J. C., Stuart, A. M., Higham, D. J.: Ergodicity for {SDE}s and approximations: locally Lipschitz vector fields and degenerate noise.Stochastic Processes Appl. 101 (2002), 185-232. Zbl 1075.60072, MR 1931266; reference:[33] Meyn, S., Tweedie, R. L.: Markov Chains and Stochastic Stability.With a prologue by Peter W. Glynn Cambridge University Press Cambridge (2009). Zbl 1165.60001, MR 2509253; reference:[34] Millet, A., Morien, P.-L.: On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution.Ann. Appl. Probab. 11 (2001), 922-951. Zbl 1017.60072, MR 1865028, 10.1214/aoap/1015345353; reference:[35] Millet, A., Sanz-Solé, M.: A stochastic wave equation in two space dimension: smoothness of the law.Ann. Probab. 27 (1999), 803-844. MR 1698971, 10.1214/aop/1022677387; reference:[36] Ondreját, M.: Existence of global martingale solutions to stochastic hyperbolic equations driven by a spatially homogeneous Wiener process.Stoch. Dyn. 6 (2006), 23-52. Zbl 1092.60024, MR 2210680, 10.1142/S0219493706001633; reference:[37] Ondreját, M.: Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process.J. Evol. Equ. 4 (2004), 169-191. Zbl 1054.60068, MR 2059301, 10.1007/s00028-003-0130-y; reference:[38] Peszat, S.: The Cauchy problem for a nonlinear stochastic wave equation in any dimension.J. Evol. Equ. 2 (2002), 383-394. MR 1930613, 10.1007/PL00013197; reference:[39] Peszat, S., Zabczyk, J.: Nonlinear stochastic wave and heat equations.Probab. Theory Relat. Fields 116 (2000), 421-443. Zbl 0959.60044, MR 1749283, 10.1007/s004400050257; reference:[40] Peszat, S., Zabczyk, J.: Stochastic evolution equations with a spatially homogeneous Wiener process.Stochastic Processes Appl. 72 (1997), 187-204. Zbl 0943.60048, MR 1486552, 10.1016/S0304-4149(97)00089-6; reference:[41] Shatah, J., Struwe, M.: Geometric Wave Equations.Courant Lecture Notes in Mathematics 2 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1998). Zbl 0993.35001, MR 1674843; reference:[42] Stroock, D. W., Varadhan, S. R. S.: On the support of diffusion processes with applications to the strong maximum principle.Proc. Conf. Berkeley, Calififornia, 1970/1971, Vol. III: Probability Theory L. M. Le Cam et al. Univ. California Press Berkeley, Calififornia (1972), 333-359. Zbl 0255.60056, MR 0400425

  7. 7
    مؤتمر
  8. 8
    دورية أكاديمية

    المؤلفون: Savostianov, Anton, Zelik, Sergey

    وصف الملف: application/pdf

    العلاقة: mr:MR3306855; zbl:Zbl 06433689; reference:[1] Babin, A. V., Vishik, M. I.: Attractors of Evolution Equations.Studies in Mathematics and Its Applications 25 North-Holland, Amsterdam (1992), translated and revised from the 1989 Russian original. Zbl 0778.58002, MR 1156492; reference:[2] Ball, J. M.: Global attractors for damped semilinear wave equations. Partial differential equations and applications.Discrete Contin. Dyn. Syst. 10 (2004), 31-52. MR 2026182; reference:[3] Blair, M. D., Smith, H. F., Sogge, C. D.: Strichartz estimates for the wave equation on manifolds with boundary.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1817-1829. Zbl 1198.58012, MR 2566711, 10.1016/j.anihpc.2008.12.004; reference:[4] Burq, N., Lebeau, G., Planchon, F.: Global existence for energy critical waves in 3-{D} domains.J. Am. Math. Soc. 21 (2008), 831-845. Zbl 1204.35119, MR 2393429, 10.1090/S0894-0347-08-00596-1; reference:[5] Carvalho, A. N., Cholewa, J. W.: Attractors for strongly damped wave equations with critical nonlinearities.Pac. J. Math. 207 (2002), 287-310. Zbl 1060.35082, MR 1972247, 10.2140/pjm.2002.207.287; reference:[6] Carvalho, A. N., Cholewa, J. W.: Local well posedness for strongly damped wave equations with critical nonlinearities.Bull. Aust. Math. Soc. 66 (2002), 443-463. Zbl 1020.35059, MR 1939206, 10.1017/S0004972700040296; reference:[7] Carvalho, A. N., Cholewa, J. W., Dlotko, T.: Strongly damped wave problems: Bootstrapping and regularity of solutions.J. Differ. Equations 244 (2008), 2310-2333. Zbl 1151.35056, MR 2413843, 10.1016/j.jde.2008.02.011; reference:[8] Chen, S., Triggiani, R.: Gevrey class semigroups arising from elastic systems with gentle dissipation: The case $0; reference:[9] Chen, S., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems.Pac. J. Math. 136 (1989), 15-55. Zbl 0633.47025, MR 0971932, 10.2140/pjm.1989.136.15; reference:[10] Chepyzhov, V. V., Vishik, M. I.: Attractors for Equations of Mathematical Physics.American Mathematical Society Colloquium Publications 49 American Mathematical Society, Providence (2002). Zbl 0986.35001, MR 1868930; reference:[11] Chueshov, I.: Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping.J. Abstr. Differ. Equ. Appl. (electronic only) 1 (2010), 86-106. Zbl 1216.37026, MR 2771816; reference:[12] Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Well-posedness and long time dynamics.Springer Monographs in Mathematics Springer, New York (2010). Zbl 1298.35001, MR 2643040; reference:[13] Feireisl, E.: Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent.Proc. R. Soc. Edinb., Sect. A, Math. 125 (1995), 1051-1062. Zbl 0838.35078, MR 1361632, 10.1017/S0308210500022630; reference:[14] Grasselli, M., Schimperna, G., Segatti, A., Zelik, S.: On the 3{D} Cahn-{H}illiard equation with inertial term.J. Evol. Equ. 9 (2009), 371-404. Zbl 1239.35160, MR 2511557, 10.1007/s00028-009-0017-7; reference:[15] Grasselli, M., Schimperna, G., Zelik, S.: On the 2{D} Cahn-{H}illiard equation with inertial term.Commun. Partial Differ. Equations 34 (2009), 137-170. Zbl 1173.35086, MR 2512857, 10.1080/03605300802608247; reference:[16] Grillakis, M. G.: Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity.Ann. Math. (2) 132 (1990), 485-509. Zbl 0736.35067, MR 1078267; reference:[17] Kalantarov, V., Savostianov, A., Zelik, S.: Attractors for damped quintic wave equations in bounded domains.http://arxiv.org/abs/1309.6272Test.; reference:[18] Kalantarov, V., Zelik, S.: Finite-dimensional attractors for the quasi-linear strongly-damped wave equation.J. Differ. Equations 247 (2009), 1120-1155. Zbl 1183.35053, MR 2531174, 10.1016/j.jde.2009.04.010; reference:[19] Kapitanski, L.: Minimal compact global attractor for a damped semilinear wave equation.Commun. Partial Differ. Equations 20 (1995), 1303-1323. Zbl 0829.35014, MR 1335752, 10.1080/03605309508821133; reference:[20] Kapitanski, L.: Global and unique weak solutions of nonlinear wave equations.Math. Res. Lett. 1 (1994), 211-223. Zbl 0841.35067, MR 1266760, 10.4310/MRL.1994.v1.n2.a9; reference:[21] Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains.Handbook of Differential Equations: Evolutionary Equations IV Elsevier/North-Holland, Amsterdam (2008), 103-200 C. M. Dafermos et al. Zbl 1221.37158, MR 2508165; reference:[22] Moise, I., Rosa, R., Wang, X.: Attractors for non-compact semigroups via energy equations.Nonlinearity 11 (1998), 1369-1393. Zbl 0914.35023, MR 1644413, 10.1088/0951-7715/11/5/012; reference:[23] Pata, V., Zelik, S.: A remark on the damped wave equation.Commun. Pure Appl. Anal. 5 (2006), 611-616. Zbl 1140.35533, MR 2217604, 10.3934/cpaa.2006.5.611; reference:[24] Pata, V., Zelik, S.: Smooth attractors for strongly damped wave equations.Nonlinearity 19 (2006), 1495-1506. Zbl 1113.35023, MR 2229785, 10.1088/0951-7715/19/7/001; reference:[25] Savostianov, A., Zelik, S.: Smooth attractors for the quintic wave equations with fractional damping.Asymptotic Anal. 87 (2014), 191-221. MR 3195728, 10.3233/ASY-131208; reference:[26] Shatah, J., Struwe, M.: Regularity results for nonlinear wave equations.Ann. Math. (2) 138 (1993), 503-518. Zbl 0836.35096, MR 1247991; reference:[27] Zelik, S.: Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities.Discrete Contin. Dyn. Syst. 11 (2004), 351-392. Zbl 1059.35018, MR 2083423, 10.3934/dcds.2004.11.351

  9. 9
    دورية أكاديمية

    المؤلفون: Bradji, Abdallah, Fuhrmann, Jürgen

    وصف الملف: application/pdf

    العلاقة: mr:MR3238828; zbl:Zbl 06362247; reference:[1] Bernardi, C., Süli, E.: Time and space adaptivity for the second-order wave equation.Math. Models Methods Appl. Sci. 15 199-225 (2005). Zbl 1070.65083, MR 2119997, 10.1142/S0218202505000339; reference:[2] Brezis, H.: Analyse Fonctionnelle: Théorie et Applications.French Collection Mathématiques Appliquées pour la Maîtrise Masson, Paris (1983). Zbl 0511.46001, MR 0697382; reference:[3] H. F. Cooper, Jr.: Propagation of one-dimensional waves in inhomogeneous elastic media.SIAM Rev. 9 671-679 (1967). Zbl 0153.56403, 10.1137/1009108; reference:[4] Dautray, R., Lions, J.-L.: Analyse Mathématique et Calcul Numérique Pour les Sciences et les Techniques.Vol. 9 French Masson, Paris (1988). Zbl 0652.45001, MR 1016606; reference:[5] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence (1998). Zbl 0902.35002, MR 1625845; reference:[6] Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow.Numerical Mathematics and Scientific Computation Oxford University Press, Oxford (2003). Zbl 1028.76001, MR 2261900; reference:[7] Grote, M. J., Schötzau, D.: Optimal error estimates for the fully discrete interior penalty DG method for the wave equation.J. Sci. Comput. 40 257-272 (2009). Zbl 1203.65182, MR 2511734, 10.1007/s10915-008-9247-z; reference:[8] Karaa, S.: Finite element $\theta$-schemes for the acoustic wave equation.Adv. Appl. Math. Mech. 3 181-203 (2011). Zbl 1262.65131, MR 2770084, 10.4208/aamm.10-m1018; reference:[9] Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations.Springer Series in Computational Mathematics 23 Springer, Berlin (2008). Zbl 1151.65339, MR 1299729; reference:[10] Raviart, P.-A., Thomas, J.-M.: Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles.French Collection Mathématiques Appliquées pour la Maîtrise Masson, Paris (1983). Zbl 0561.65069, MR 0773854; reference:[11] Zampieri, E., Pavarino, L. F.: Approximation of acoustic waves by explicit Newmark's schemes and spectral element methods.J. Comput. Appl. Math. 185 (2006), 308-325. Zbl 1079.65093, MR 2169068, 10.1016/j.cam.2005.03.013

  10. 10
    دورية أكاديمية

    المؤلفون: Park, Jong Yeoul, Park, Sun Hye

    وصف الملف: application/pdf

    العلاقة: mr:MR2291736; zbl:Zbl 1164.35445; reference:[1] J. J. Bae, J. Y. Park, and J. M. Jeong: On uniform decay of solutions for wave equation of Kirchhoff type with nonlinear boundary damping and memory source term.Appl. Math. Comput. 138 (2003), 463–478. MR 1950077, 10.1016/S0096-3003(02)00163-7; reference:[2] E. E. Beckenbach and R. Bellman: Inequalities.Springer-Verlag, Berlin, 1971. MR 0192009; reference:[3] M. M. Cavalcanti: Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation.Discrete and Continuous Dynamical Systems 8 (2002), 675–695. Zbl 1009.74034, MR 1897875; reference:[4] M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma, and J. A. Soriano: Global existence and asymptotic stability for viscoelastic problems.Differential and Integral Equations 15 (2002), 731–748. MR 1893844; reference:[5] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, and J. A. Soriano: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping.Diff. Int. Eqs. 14 (2001), 85–116. MR 1797934; reference:[6] I. Lasiecka, D. Tataru: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping.Diff. Int. Eqs. 6 (1993), 507–533. MR 1202555; reference:[7] J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod-Gauthier Villars, Paris, 1969. Zbl 0189.40603, MR 0259693; reference:[8] J. Y. Park, J. J. Bae: On coupled wave equation of Kirchhoff type with nonliear boundary damping and memory term.Appl. Math. Comput. 129 (2002), 87–105. MR 1897321, 10.1016/S0096-3003(01)00031-5; reference:[9] B. Rao: Stabilization of Kirchhoff plate equation in star-shaped domain by nonlinear feedback.Nonlinear Anal., T.M.A. 20 (1993), 605–626. MR 1214731, 10.1016/0362-546X(93)90023-L; reference:[10] M. L. Santos: Decay rates for solutions of a system of wave equations with memory.Elect. J. Diff. Eqs. 38 (2002), 1–17. Zbl 1010.35012, MR 1907714; reference:[11] E. Zuazua: Uniform stabilization of the wave equation by nonlinear boundary feedback.SIAM J. Control Optim. 28 (1990), 466–477. Zbl 0695.93090, MR 1040470, 10.1137/0328025