دورية أكاديمية

Biomechanical study of a low-cost external fixator for diaphyseal fractures of long bones

التفاصيل البيبلوغرافية
العنوان: Biomechanical study of a low-cost external fixator for diaphyseal fractures of long bones
المؤلفون: Kouassi, Kouame Jean Eric, Cartiaux, Olivier, Fonkoue, Loïc, Detrembleur, Christine, Cornu, Olivier
المساهمون: UCL - SSS/IREC/NMSK - Neuro-musculo-skeletal Lab, UCL - (SLuc) Service d'orthopédie et de traumatologie de l'appareil locomoteur, UCL - SSS/IREC/MORF - Pôle de Morphologie
المصدر: Journal of Orthopaedic Surgery and Research, Vol. 15, no. 1, p. 247 [1-8] (2020)
بيانات النشر: BioMed Central Ltd.
سنة النشر: 2020
المجموعة: DIAL@UCL (Université catholique de Louvain)
مصطلحات موضوعية: Biomechanical testing, External fixators, Low cost, Stiffness
الوصف: BACKGROUND: External fixation improves open fracture management in emerging countries. However, sophisticated models are often expensive and unavailable. We assessed the biomechanical properties of a low-cost external fixation system in comparison with the Hoffmann ® 3 system, as a reference. METHODS : Transversal, oblique, and comminuted fractures were created in the diaphysis of tibia sawbones. Six external fixators were tested in three modes of loading– axial compression, medio-lateral (ML) bending, and torsion – in order to determine construction stiffness. The fixator construct implies two uniplanar (UUEF1, UUEF2) depending the pin-rods fixation system and two biplanar (UBEF1, UBEF2) designs based on different bar to bar connections. The designed low-cost fixators were compared to a Hoffmann ® 3 fixator single rod (H3-SR) and double rod (H3-DR). Twenty-seven constructs were stabilized with UUEF1, UUEF2 and H3-SR (nine construct each). Nine constructs were stabilized with UBEF1, UBEF2 and H3-DR (three construct each). RESULTS : UUEF2 was significantly stiffer than H3-SR (p<0.001) in axial compression for oblique fractures and UUEF1 was significantly stiffer than H3-SR (p=0.009) in ML bending for transversal fractures. Both UUEFs were significantly stiffer than H3-SR in axial compression and torsion (p<0.05), and inferior to H3-SR in ML bending, for comminuted fractures. In the same fracture pattern, UBEFs were significantly stiffer than H3-DR (p=0.001) in axial compression and torsion, while only UBEF1 was significantly stiffer than H3-DR in ML bending (p=0.013). CONCLUSIONS: The results demonstrated that the stiffness of the UUEF and UBEF device compares to the reference fixator and may be helpful in maintaining fracture reduction. Fatigue testing and clinical assessment must be conducted to ensure that the objective of bone healing is achievable with such low-cost devices.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 1749-799X
العلاقة: boreal:231904; http://hdl.handle.net/2078.1/231904Test; info:pmid/; urn:EISSN:1749-799X
DOI: 10.1186/s13018-020-01777-5
الإتاحة: https://doi.org/10.1186/s13018-020-01777-5Test
http://hdl.handle.net/2078.1/231904Test
حقوق: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.3CD00620
قاعدة البيانات: BASE
الوصف
تدمد:1749799X
DOI:10.1186/s13018-020-01777-5