دورية أكاديمية

Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy

التفاصيل البيبلوغرافية
العنوان: Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy
المؤلفون: Lee, Byong-June, Zhao, Chen, Yu, Jeong-Hoon, Kang, Tong-Hyun, Park, Hyean-Yeol, Kang, Joonhee, Jung, Yongju, Liu, Xiang, Li, Tianyi, Xu, Wenqian, Zuo, Xiao-Bing, Xu, Gui-Liang, Amine, Khalil, Yu, Jong-Sung
المساهمون: 150022, Lee, Byong-June, Zhao, Chen, Yu, Jeong-Hoon, Kang, Tong-Hyun, Park, Hyean-Yeol, Kang, Joonhee, Jung, Yongju, Liu, Xiang, Li, Tianyi, Xu, Wenqian, Zuo, Xiao-Bing, Xu, Gui-Liang, Amine, Khalil, Yu, Jong-Sung
بيانات النشر: Nature Publishing Group
سنة النشر: 2022
المجموعة: DGIST Scholar (Daegu Gyeongbuk Institute of Science & Technology)
الوصف: Lithium-sulfur batteries have theoretical specific energy higher than state-of-the-art lithium-ion batteries. However, from a practical perspective, these batteries exhibit poor cycle life and low energy content owing to the polysulfides shuttling during cycling. To tackle these issues, researchers proposed the use of redox-inactive protective layers between the sulfur-containing cathode and lithium metal anode. However, these interlayers provide additional weight to the cell, thus, decreasing the practical specific energy. Here, we report the development and testing of redox-active interlayers consisting of sulfur-impregnated polar ordered mesoporous silica. Differently from redox-inactive interlayers, these redox-active interlayers enable the electrochemical reactivation of the soluble polysulfides, protect the lithium metal electrode from detrimental reactions via silica-polysulfide polar-polar interactions and increase the cell capacity. Indeed, when tested in a non-aqueous Li-S coin cell configuration, the use of the interlayer enables an initial discharge capacity of about 8.5 mAh cm−2 (for a total sulfur mass loading of 10 mg cm−2) and a discharge capacity retention of about 64 % after 700 cycles at 335 mA g−1 and 25 °C. © 2022, UChicago Argonne, LLC, Operator of Argonne National Laboratory. ; 1 ; Y
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 2041-1723
العلاقة: Nature Communications, v.13, no.1; http://hdl.handle.net/20.500.11750/16860Test; 000837856500022; 2-s2.0-85135551812; 17923; 150022; 13; Nature Communications
DOI: 10.1038/s41467-022-31943-8
الإتاحة: https://doi.org/20.500.11750/16860Test
https://doi.org/10.1038/s41467-022-31943-8Test
https://hdl.handle.net/20.500.11750/16860Test
رقم الانضمام: edsbas.B8DA9C94
قاعدة البيانات: BASE
الوصف
تدمد:20411723
DOI:10.1038/s41467-022-31943-8