دورية أكاديمية

Mitigating the Large‐Volume Phase Transition of P2‐Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium‐Ion Batteries

التفاصيل البيبلوغرافية
العنوان: Mitigating the Large‐Volume Phase Transition of P2‐Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium‐Ion Batteries
المؤلفون: Cheng, Zhiwei, Zhao, Bin, Wang, Peng-Fei, Guo, Yu-Guo, Guo, Yu-Jie, Yu, Lianzheng, Yuan, Boheng, Hua, Weibo, Yin, Ya-Xia, Xu, Sailong, Xiao, Bing, Han, Xiaogang
المصدر: Advanced energy materials 12(14), 2103461 (2022). doi:10.1002/aenm.202103461
بيانات النشر: Wiley-VCH
سنة النشر: 2022
المجموعة: DESY Publication Database (PUBDB)
مصطلحات موضوعية: info:eu-repo/classification/ddc/050
جغرافية الموضوع: DE
الوصف: Layered transition metal oxide P2-Na$_{2/3}$Ni$_{1/3}$Mn$_{2/3}$O$_2$ usually suffers from large-volume phase transitions and different Na-vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2-type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X-ray diffraction, in operando X-ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi-metal ions converts the unfavorable and large-volume P2 to O2 transition into a moderate “Z”-intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2-Na$_{0.7}$Li$_{0.03}$Mg$_{0.03}$Ni$_{0.27}$Mn$_{0.6}$Ti$_{0.07}$O$_2$ electrode delivers a reversible capacity of 134 mAh g$^{−1}$, a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g$^{−1}$ at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg$^{−1}$. This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium-ion batteries.
نوع الوثيقة: article in journal/newspaper
اللغة: English
العلاقة: info:eu-repo/semantics/altIdentifier/issn/1614-6840; info:eu-repo/semantics/altIdentifier/issn/1614-6832; info:eu-repo/semantics/altIdentifier/wos/WOS:000758160400001; https://bib-pubdb1.desy.de/record/475921Test; https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01519%22Test
الإتاحة: https://doi.org/10.1002/aenm.202103461Test
https://bib-pubdb1.desy.de/record/475921Test
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01519%22Test
حقوق: info:eu-repo/semantics/closedAccess
رقم الانضمام: edsbas.65773450
قاعدة البيانات: BASE