دورية أكاديمية

HUMAN MYOCARDIAL CELL LINES GENERATED WITH SV40 TEMPERATURE-SENSITIVE MUTANT TSA58

التفاصيل البيبلوغرافية
العنوان: HUMAN MYOCARDIAL CELL LINES GENERATED WITH SV40 TEMPERATURE-SENSITIVE MUTANT TSA58
المؤلفون: BRUCE I. GOLDMAN, KUNJLATA M. AMIN, HAJIME KUBO, ARUN SINGHAL, JOHN WURZEL
المساهمون: BRUCE I. GOLDMAN, KUNJLATA M. AMIN, HAJIME KUBO, ARUN SINGHAL, JOHN WURZEL
المصدر: https://doi.org/10.1290/0605032.1Test.
بيانات النشر: Society for In Vitro Biology
سنة النشر: 2006
المجموعة: BioOne Online Journals
جغرافية الموضوع: world
الوصف: Conditionally transformed human myocardial cell lines would be a valuable resource for studying human cardiac cell biology. We generated clonal human fetal cardiocyte cell lines by transfection of fetal ventricular cardiac cell clones with a plasmid containing a replication-defective mutant of the temperature-sensitive SV40 strain tsA58. Multiple resulting cell lines showed similar features, namely: (1) T antigen (TAg) expression at both permissive (34° C) and restrictive (40.5° C) temperatures; (2) extended growth capacity in comparison with parental wild type, when grown at the permissive temperature; (3) both temperature-dependent and serum-responsive growth, and; (4) an incompletely differentiated fetal phenotype which was similar at both permissive and restrictive temperatures and in the presence and absence of serum. The transformed myocyte phenotype was demonstrated using immunocytochemistry, Western and Northern blotting, and reverse transcription–polymerase chain reaction (RT-PCR). Cell lines expressed skeletal α-actin, atrial natriuretic peptide (ANP), and keratins, but no sarcomeric myosin heavy chain or desmin. Immunoreactive sarcomeric actin was expressed predominantly as a truncated protein of approximately 38 kD. The phenotype of the transformed cells differs from that of the wild-type parental cells as well as from those reported by others who have used TAg to immortalize rodent or human ventricular myocytes. Our cell lines should provide a useful tool for study of the molecular mechanisms regulating growth and differentiation in human cardiac muscle cells.
نوع الوثيقة: text
وصف الملف: text/HTML
اللغة: English
DOI: 10.1290/0605032.1
الإتاحة: https://doi.org/10.1290/0605032.1Test
حقوق: All rights reserved.
رقم الانضمام: edsbas.96D924D8
قاعدة البيانات: BASE