يعرض 1 - 10 نتائج من 22 نتيجة بحث عن '"treadmill"', وقت الاستعلام: 1.28s تنقيح النتائج
  1. 1
    دورية أكاديمية

    الوصف: Background The ability to adjust walking to environmental context is often reduced in older adults and, partly as result of this, falls are common in this population. A treadmill with visual context projected on its belt (e.g., obstacles and targets) allows for practicing step adjustments relative to that context, while concurrently exploiting the great amount of walking practice associated with conventional treadmill training. The present study was conducted to compare the efficacy of adaptability treadmill training, conventional treadmill training and usual physical therapy in improving walking ability and reducing fear of falling and fall incidence in older adults during rehabilitation from a fall-related hip fracture. Methods In this parallel-group, open randomized controlled trial, seventy older adults with a recent fall-related hip fracture (83.3 ± 6.7 years, mean ± standard deviation) were recruited from inpatient rehabilitation care and block randomized to six weeks inpatient adaptability treadmill training ( n = 24), conventional treadmill training ( n = 23) or usual physical therapy ( n = 23). Group allocation was only blind for assessors. Measures related to walking ability were assessed as the primary outcome before and after the intervention and at 4-week and 12-month follow-up. Secondary outcomes included general health, fear of falling, fall rate and proportion of fallers. Results Measures of general walking ability, general health and fear of falling improved significantly over time. Significant differences among the three intervention groups were only found for the Functional Ambulation Category and the dual-task effect on walking speed, which were in favor of respectively conventional treadmill training and adaptability treadmill training. Conclusions Overall, adaptability treadmill training, conventional treadmill training and usual physical therapy resulted in similar effects on walking ability, fear of falling and fall incidence in older adults rehabilitating from a fall-related hip ...

  2. 2
    دورية أكاديمية

    الوصف: Background Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fat peak ) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fat peak as well as its actual velocity (V PFO ) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of V PFO and Fat peak during treadmill ergometry running. Methods Sixteen recreational athletes (f = 7, m = 9; 25 ± 3 y; 1.76 ± 0.09 m; 68.3 ± 13.7 kg; 23.1 ± 2.9 kg/m 2 ) performed 2 different running protocols on 3 different days with standardized nutrition the day before testing. At day 1, peak oxygen uptake (VO 2peak ) and the velocities at the aerobic threshold (V LT ) and respiratory exchange ratio (RER) of 1.00 (V RER ) were assessed. At days 2 and 3, subjects ran an identical submaximal incremental test (Fat-peak test) composed of a 10 min warm-up (70 % V LT ) followed by 5 stages of 6 min with equal increments (stage 1 = V LT , stage 5 = V RER ). Breath-by-breath gas exchange data was measured continuously and used to determine fat oxidation rates. A third order polynomial function was used to identify V PFO and subsequently Fat peak . The reproducibility and variability of variables was verified with an intraclass correlation coefficient (ICC), Pearson’s correlation coefficient, coefficient of variation (CV) and the mean differences (bias) ± 95 % limits of agreement (LoA). Results ICC, Pearson’s correlation and CV for V PFO and Fat peak were 0.98, .

  3. 3
    دورية أكاديمية

    الوصف: Background Precision and accuracy assurance in cardiopulmonary exercise testing (CPET) facilitates multicenter clinical trials by maximizing statistical power and minimizing participant risk. Current guidelines recommend quality control that is largely based on precision at individual testing centers (minimizing test–retest variability). The aim of this study was to establish a multicenter biological quality control (BioQC) method that considers both precision and accuracy in CPET. Methods BioQC testing was 6-min treadmill walking at 20 W and 70 W (below the lactate threshold) with healthy non-smoking laboratory staff (15 centers; ~16 months). Measurements were made twice within the initial 4 weeks and quarterly thereafter. Quality control was based on: 1) within-center precision (coefficient of variation [CV] for oxygen uptake [V̇O 2 ], carbon dioxide output [V̇CO 2 ], and minute ventilation [V̇E] within ±10 %); and 2) a criterion that V̇O 2 at 20 W and 70 W, and ∆V̇O 2 /∆WR were each within ±10 % predicted. “Failed” BioQC tests (i.e., those outside the predetermined criterion) prompted troubleshooting and repeated measurements. An additional retrospective analysis, using a composite z-score combining both BioQC precision and accuracy of V̇O 2 at 70 W and ∆V̇O 2 /∆WR, was compared with the other methods. Results Of 129 tests (5 to 8 per center), 98 (76 %) were accepted by within-center precision alone. Within-center CV was <9 %, but between-center CV remained high (9.6 to 12.5 %). Only 43 (33 %) tests had all V̇O 2 measurements within the ±10 % predicted criterion. However, a composite z-score of 0.67 identified 67 (52 %) non-normal outlying tests, exclusion of which coincided with the minimum CV for CPET variables. Conclusions Study-wide BioQC using a composite z-score can increase study-wide precision and accuracy, and optimize the design and conduct of multicenter clinical trials involving CPET. Trial registration ClinicalTrials.gov identifier: NCT01072396 ; February 19, 2010.

  4. 4
    دورية أكاديمية

    الوصف: Background In some countries, the public health system has less availability when compared to the population covered by health insurance. In addition, inappropriate referrals for treadmill exercise stress test increase spending and lead to unnecessary interventions. We aim to determine the prevalence and characteristics of inappropriate referrals for treadmill exercise stress tests in the assessment of coronary artery disease (CAD), considering public and private health systems scenarios. Methods A cross-sectional design was used to describe the frequency of inappropriate use of exercise testing in the diagnosis of CAD and to determine its predictors. We consecutively enrolled 191 patients from two outpatient facilities in Northeast Brazil. For inclusion, the exercise testing should be referred for the assessment of CAD. We performed logistic regression models to identify independent predictors of inappropriate use. Results Treadmill exercise stress tests were rated as inappropriate in 150 (78 %) patients. The majority of patients had low or very low pre-test probability of CAD. Presence of hypertension, diabetes and dyslipidemia were more frequent in the appropriate than inappropriate indications (71 %, 19 % and 29 % versus 43 %, 8 % and 16 %, respectively). Tests performed both at the public and private system showed high prevalence of inappropriate examinations, higher in the latter (57 % versus 87 %, P < 0.001). The private health system was the major independent predictor of inappropriate referral, consistent in all regression models (when adjusting for clinical variables, OR = 4.3; P < 0.001). Conclusion The vast majority of treadmill exercise stress test referrals in the assessment of CAD were inappropriate. The availability of the method and not the estimate probability of CAD appear to be the underlying condition for a treadmill test referral.

  5. 5
    دورية أكاديمية

    الوصف: Background Exercise is a non-pharmacologic agent widely used for hypertension control, where low intensity is often associated with blood pressure reduction. Maximal lactate steady state (MLSS) was recently identified in spontaneously hypertensive rats (SHRs) as an important step in establishing secure intensities for prescribing exercise for hypertensive phenotypes. Here we verified the effects of training around MLSS, 20% below MLSS, and 15% above MLSS on aerobic fitness and blood pressure status of SHR. Eighteen-week-old SHRs (n = 5, ~ 172.4 ± 8.1 mm Hg systolic blood pressure) were trained on a treadmill for 4 weeks for 30 min/day, 5 days/week at a velocity of 20 m.min −1 . After training, a novel MLSS and incremental test was performed to evaluate the animals’ aerobic fitness. Furthermore, ~ 22-week-old SHRs (n = 12, ~169.8 ± 13.8 mm Hg systolic blood pressure) were divided into non-exercised (CG, n = 4), low intensity (LIG, n = 4) and high intensity (HIG, n = 4) groups, where rats were trained at 16 m.min −1 and 23 m.min −1 respectively for 30 min/day, 5 days/week for 4 weeks. Results Exercise performed at MLSS enhanced aerobic fitness, leading to a novel MLSS, identified around 30 m.min −1 . Low and high intensity training reduced systolic blood pressure and only high intensity training led to improved aerobic fitness (28.1%, p < 0.01). Conclusions Therefore, our data indicate a decrease in blood pressure due to low and high exercise intensity, and an increase in aerobic fitness provided by high-intensity exercise in SHRs.

  6. 6
    تقرير

    الوصف: Background After neurological injury, gait rehabilitation typically focuses on task oriented training with many repetitions of a particular movement. Modern rehabilitation devices, including treadmills, augment gait rehabilitation. However, they typically provide gait training only in the forward direction of walking, hence the mechanisms associated with changing direction during turning are not practiced. A regular treadmill extended with the addition of rotation around the vertical axis is a simple device that may enable the practice of turning during walking. The objective of this study was to investigate to what extent pelvis and torso rotations in the transversal plane, as well as stride lengths while walking on the proposed rotating treadmill, resemble those in over ground turning. Methods Ten neurologically and orthopedically intact subjects participated in the study. We recorded pelvis and torso rotations in the transversal plane and the stride lengths during over ground turning and while walking on a rotating treadmill in four experimental conditions of turning. The similarity between pelvis and torso rotations in over ground turning and pair-matching walking on the rotating treadmill was assessed using intra-class correlation coefficient (ICC - two-way mixed single measure model). Finally, left and right stride lengths in over ground turning as well as while walking on the rotating treadmill were compared using a paired t-test for each experimental condition. Results An agreement analysis showed average ICC ranging between 0.9405 and 0.9806 for pelvis and torso rotation trajectories respectively, across all experimental conditions and directions of turning. The results of the paired t-tests comparing left and right stride lengths showed that the stride of the outer leg was longer than the stride of the inner leg during over ground turning as well as when walking on the rotating treadmill. In all experimental conditions these differences were statistically significant. Conclusions In this study ...

  7. 7
    تقرير

    الوصف: Background Robotic devices have been utilized in gait rehabilitation but have only produced moderate results when compared to conventional physiotherapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking, which are not well understood but are systematically explored in this study, is needed to inform robotic interventions in gait therapy. Methods In this study we investigate mechanisms of inter-leg coordination by utilizing novel sensory perturbations created by real-time control of floor stiffness on a split-belt treadmill. We systematically alter the unilateral magnitude of the walking surface stiffness and the timing of these perturbations within the stance phase of the gait cycle, along with the level of body-weight support, while recording the kinematic and muscular response of the uperturbed leg. This provides new insight into the role of walking surface stiffness in inter-leg coordination during human walking. Both paired and unpaired unadjusted t-tests at the 95 % confidence level are used in the approriate scernario to determine statistical significance of the results. Results We present results of increased hip, knee, and ankle flexion, as well as increased tibialis anterior and soleus activation, in the unperturbed leg of healthy subjects that is repeatable and scalable with walking surface stiffness. The observed response was not impacted by the level of body-weight support provided, which suggests that walking surface stiffness is a unique stimulus in gait. In addition, we show that the activation of the tibialis anterior and soleus muscles is altered by the timing of the perturbations within the gait cycle. Conclusions This paper characterizes the contralateral leg’s response to ipsilateral manipulations of the walking surface and establishes the importance of walking surface stiffness in inter-leg coordination during human walking.

  8. 8
    تقرير

    الوصف: Background The robotics-assisted tilt table (RATT), including actuators for tilting and cyclical leg movement, is used for rehabilitation of severely disabled neurological patients. Following further engineering development of the system, i.e. the addition of force sensors and visual bio-feedback, patients can actively participate in exercise testing and training on the device. Peak cardiopulmonary performance parameters were previously investigated, but it also important to compare submaximal parameters with standard devices. The aim of this study was to evaluate the feasibility of the RATT for estimation of submaximal exercise thresholds by comparison with a cycle ergometer and a treadmill. Methods 17 healthy subjects randomly performed six maximal individualized incremental exercise tests, with two tests on each of the three exercise modalities. The ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) were determined from breath-by-breath data. Results VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill: oxygen uptake (V′O 2 ) at VAT was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V′O 2 at RCP was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001). High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69–0.80). VAT and RCP demonstrated excellent test–retest reliability for all three devices (ICC from 0.81 to 0.98). Mean differences between the test and retest values on each device were close to zero. The ventilatory equivalent for O 2 at VAT for the RATT and cycle ergometer were similar and both were higher than the treadmill. The ventilatory equivalent for CO 2 at RCP was similar for all devices. Ventilatory equivalent parameters demonstrated fair-to-excellent reliability and repeatability. Conclusions It is feasible to use the RATT for estimation of submaximal exercise thresholds: VAT and RCP on the RATT were lower than ...

  9. 9
    تقرير

    الوصف: Background Sedentary behaviour is an independent risk factor for mortality and morbidity, especially for type 2 diabetes. Since office work is related to long periods that are largely sedentary, it is of major importance to find ways for office workers to engage in light intensity physical activity (LPA). The Inphact Treadmill study aims to investigate the effects of installing treadmill workstations in offices compared to conventional workstations. Methods/Design A two-arm, 13-month, randomized controlled trial (RCT) will be conducted. Healthy overweight and obese office workers (n = 80) with mainly sedentary tasks will be recruited from office workplaces in Umeå, Sweden. The intervention group will receive a health consultation and a treadmill desk, which they will use for at least one hour per day for 13 months. The control group will receive the same health consultation, but continue to work at their regular workstations. Physical activity and sedentary time during workdays and non-workdays as well as during working and non-working hours on workdays will be measured objectively using accelerometers (Actigraph and activPAL) at baseline and after 2, 6, 10, and 13 months of follow-up. Food intake will be recorded and metabolic and anthropometric variables, body composition, stress, pain, depression, anxiety, cognitive function, and functional magnetic resonance imaging will be measured at 3–5 time points during the study period. Interviews with participants from the intervention group will be performed at the end of the study. Discussion This will be the first long-term RCT on the effects of treadmill workstations on objectively measured physical activity and sedentary time as well as other body functions and structures/morphology during working and non-working hours among office workers. This will provide further insight on the effects of active workstations on our health and could fill in some of the knowledge gaps regarding how we can reduce sedentary time in office environments. Trial registration ...

  10. 10
    تقرير

    المؤلفون: Kalron, Alon

    مصطلحات موضوعية: Multiple Sclerosis, Gait, Fatigue, Treadmill

    الوصف: Background Multiple sclerosis (MS) is a multi-focal progressive disorder of the central nervous system often resulting in diverse clinical manifestations. Symptomatic fatigue is quite common in people with MS (PwMS), with prevalence as high as 85%. Nevertheless, it remains poorly understood and its association with walking capabilities unclear. Therefore, the objective of this investigation was to examine the relationship between symptomatic fatigue and spatio-temporal parameters of gait in PwMS based on an instrumented treadmill. Methods One hundred and twenty-four relapsing-remitting patients diagnosed with MS, 84 women and 40 men aged 42.6 (S.D = 11.9), participated in this investigation. A convenience sample of 25 apparently healthy subjects, 15 women and 10 men aged 40.3 (S.D = 11.1), served as controls. Gait spatiotemporal parameters were obtained using the Zebris FDM-T Treadmill (Zebris1 Medical GmbH, Germany). The Modified Fatigue Impact Scale (MFIS), a self-reported questionnaire, was used to determine the level of symptomatic fatigue in the MS study group. PwMS were divided into two groups: fatigued and non-fatigued. Results Forty-four PwMS were classified as suffering from fatigue (mean MFIS = 52.0, S.D = 13.7); 80 were classified as non-fatigued (mean MFIS = 14.5, S.D = 14.5). Individuals in the fatigued group walked slower than those in the non-fatigued group; 1.7 (S.D = 2.4) vs. 2.4 (S.D = 1.0); P < 0.001, respectively. Moreover, fatigued patients took smaller steps, had a shorter stride length, prolonged stance, double support phase and a shorter single support phase compared to the non-fatigued group. In the total group, fatigue was significantly correlated with 10 (out of 14) spatiotemporal parameters of gait, however, correlation scores <0.40 were considered as weak correlations. According to step one of the linear logistic regression analysis, the temporal gait component was found to explain 5.1% of the variance related to symptomatic fatigue, R2 = 0.051, χ 2 (1) = 6.511, P = ...