يعرض 1 - 10 نتائج من 154 نتيجة بحث عن '"Enterotoxigenic Escherichia coli"', وقت الاستعلام: 0.71s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Journal of Animal Science and Biotechnology, Vol 15, Iss 1, Pp 1-19 (2024)

    الوصف: Abstract Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases. Oleanolic acid (OA) is a pentacyclic triterpene that is ubiquitous in plants. Our previous work demonstrated the protective effect of OA on intestinal health, but the underlying molecular mechanisms remain unclear. This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli (ETEC) in piglets. The key molecular role of bile acid receptor signaling in this process has also been explored. Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets (P

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Microorganisms, Vol 12, Iss 5, p 966 (2024)

    الوصف: Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers. The Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction was used to synthesize a new mannosylated dendrimer containing 12 mannopyranoside residues in the periphery. The enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4) viability, measured at 600 nm, showed the half-inhibitory concentration (IC50) of metal-free glycodendrimers (D), copper-loaded glycodendrimers (D:Cu) and silver-loaded glycodendrimers (D:Ag) closed to 4.5 × 101, 3.5 × 101 and to 1.0 × 10−2 µg/mL, respectively, and minimum inhibitory concentration (MIC) of D, D:Cu and D:Ag of 2.0, 1.5 and 1.0 × 10−4 µg/mL, respectively. The release of bacteria contents onto broth and the inhibition of ETEC:F4 biofilm formation increased with the number of metallo-glycodendrimer materials, with a special interest in silver-containing nanomaterial, which had the highest activity, suggesting that glycodendrimer-based materials interfered with bacteria-bacteria or bacteria–polystyrene interactions, with bacteria metabolism and can disrupt bacteria cell walls. Our findings identify metal–mannose-dendrimers as potent bactericidal agents and emphasize the effect of entrapped zero-valent metal against ETEC:F4.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: Frontiers in Cellular and Infection Microbiology, Vol 13 (2023)

    الوصف: BackgroundEnterotoxigenic Escherichia coli (ETEC), an important intestinal pathogen, poses a significant threat to the intestinal health of piglets. Bacillus coagulans (BC), a potential feed additive, can improve the intestinal function of piglets. However, the effects of BC on growth performance and intestinal function in ETEC-infected piglets are still unclear. In this study, 24 7-day-old piglets were randomly assigned to three treatment groups: control group (fed a basal diet), ETEC group (fed a basal diet and challenged with ETEC K88) and BC+ETEC group (fed a basal diet, orally administered BC, challenged with ETEC K88). During Days 1-6 of the trial, piglets in the BC+ETEC group were orally administered BC (1×108CFU/kg). On Day 5 of the trial, piglets in the ETEC and BC+ETEC groups were orally administered ETEC K88 (5×109CFU/piglet). Blood, intestinal tissue, and content samples were collected from the piglets on Day 7 of the trial.ResultsThe average daily feed intake in the ETEC group was significantly reduced compared to that of the control group. Further research revealed that ETEC infection significantly damaged the structure of the small intestine. Compared to the control group, the villus height and surface area of the jejunum, the ratio of villus height to crypt depth in the duodenum and jejunum, and the activities of catalase and total superoxide dismutase in the jejunum were significantly reduced. Additionally, the levels of myeloperoxidase in the jejunum, malondialdehyde in the plasma and jejunum, and intestinal epithelial apoptosis were significantly increased in the ETEC group. However, BC supplementation had significantly mitigated these negative effects in the BC+ETEC group by Day 7 of the trial. Moreover, BC supplementation improved the gut microbiota imbalance by reversing the decreased numbers of Enterococcus, Clostridium and Lactobacillus in jejunum and Escherichia coli, Bifidobacterium and Lactobacillus in the colon, as well as the increased number of Escherichia coli in the jejunum induced by ETEC K88.ConclusionsOverall, BC supplementation reduced the decline in average daily feed intake in ETEC K88-infected piglets by attenuating intestinal epithelial apoptosis and oxidative stress and regulating the gut microbiota. This suggests that BC may be used to prevent intestinal infections caused by ETEC in piglets.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: Porcine Health Management, Vol 9, Iss 1, Pp 1-18 (2023)

    الوصف: Abstract Background Recently, in-feed medicinal zinc has been phased out in pig production in the European Union. This makes updated knowledge about porcine post-weaning diarrhea (PWD) crucial. The objectives of the present study were to investigate (i) the clinical presentation of PWD in pigs housed in Danish herds that did not use medicinal zinc, specifically the prevalence of diarrhea and whether PWD was associated to clinical signs of dehydration or altered body temperature; (ii) which microorganism are associated to PWD; and iii) whether measurements of the fecal pH have a potential to be used diagnostically to differentiate between infectious etiologies in cases of PWD. Results The prevalence of diarrhea varied considerably between the outbreaks in the nine studied herds (median = 0.58, range = 0.10; 0.94). In a cross-sectional design (n = 923), diarrhea was associated with reduced rectal temperature and alkaline feces. Diarrhea was also associated with observably reduced skin elasticity, possibly indicating dehydration. In both diarrheic case pigs (n = 87) and control pigs (n = 86), the presence of Brachyspira pilosicoli, Clostridium perfringens, Cryptosporidium spp., Cystoisopora suis, enterotoxigenic Escherichia coli, Lawsonia intracellularis, porcine circovirus types 2 and 3, rotavirus A, B, C, and H, Samonella enterica spp. enterica, and Trichuris suis was described. PWD was associated with high levels of enterotoxigenic E. coli shedding (odds ratio versus no E. coli detection = 4.79 [CI 1.14; 12.62]). Diarrhea was associated with high levels of rotavirus A shedding (odds ratio versus no/low rotavirus A = 3.80 [CI 1.33; 7.97]). The association between microbiological findings in diarrheic pigs and fecal pH was negligible. Conclusions Enterotoxigenic E. coli was confirmed to be a cause of PWD; however, cases of PWD where enterotoxigenic E. coli was not detected in high levels occurred commonly, and this adds to the increasing evidence suggesting that PWD is not necessarily a result of enteric colibacillosis. Rotaviral enteritis might be a differential diagnosis of PWD. pH-measurements cannot be used to differentiate between differential diagnoses for PWD.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Veterinary World, Vol 16, Iss 6, Pp 1231-1237 (2023)

    الوصف: Background and Aim: The pathogenicity of Escherichia coli is determined by the presence of genes that mediate virulence factors such as adherence capacity and toxin production. This research aimed to identify the adhesion factors and antibiotic resistance capacity of E. coli strains associated with diarrhea in piglets in Colombia. Materials and Methods: Presumptive E. coli strains were isolated from the rectal swabs of piglets in swine farms between 4 and 40 days of age with evidence of diarrhea. Presumptive E. coli strains were tested for antibiotic resistance. The hemolytic capacity of presumptive E. coli strains was measured and molecularly identified. Strains confirmed as hemolytic E. coli was evaluated for the presence of five adhesion factors (F4, F5, F6, F18, and F41) and resistance to 11 antibiotics. Results: Fifty-two putative E. coli strains were isolated, six of which showed a hemolytic capacity. The hemolytic strains were molecularly identified as E. coli. Adhesive fimbriae were found in five of six β-hemolytic E. coli isolates. Combinations of the adhesion factors F6–F18 and F6–F41 were linked to antibiotic resistance capacity. Conclusion: The phenomenon of E. coli strains resistant to multiple antibiotics on pig farms represents a constant risk factor for public health and pig production.

    وصف الملف: electronic resource

  6. 6

    المؤلفون: von Mentzer, Astrid, 1983, Svennerholm, Ann-Mari, 1947

    المصدر: Trends in Microbiology. 32(5):448-464

    الوصف: Colonization factors (CFs) are major virulence factors of enterotoxigenic Escherichia coli (ETEC). This pathogen is among the most common causes of bacterial diarrhea in children in low- and middle-income countries, travelers, and livestock. CFs are major candidate antigens in vaccines under development as preventive measures against ETEC infections in humans and livestock. Recent molecular studies have indicated that newly identified CFs on human ETEC are closely related to animal ETEC CFs. Increased knowledge of pathogenic mechanisms, immunogenicity, regulation, and expression of ETEC CFs, as well as the possible spread of animal ETEC to humans, may facilitate the future development of ETEC vaccines for humans and animals. Here, we present an updated review of CFs in ETEC.

  7. 7
    دورية أكاديمية

    المصدر: International Journal of Molecular Sciences, Vol 25, Iss 7, p 3638 (2024)

    الوصف: Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 μg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية

    المصدر: Vaccines, Vol 12, Iss 3, p 304 (2024)

    الوصف: Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in piglets. The current primary approach for ETEC prevention and control relies on antibiotics, as few effective vaccines are available. Consequently, an urgent clinical demand exists for developing an effective vaccine to combat this disease. Here, we utilized food-grade Lactococcus lactis NZ3900 and expression plasmid pNZ8149 as live vectors, together with the secreted expression peptide Usp45 and the cell wall non-covalent linking motif LysM, to effectively present the mutant LTA subunit, the LTB subunit of heat-labile enterotoxin, and the FaeG of F4 pilus on the surface of recombinant lactic acid bacteria (LAB). Combining three recombinant LAB as a live vector oral vaccine, we assessed its efficacy in preventing F4+ ETEC infection. The results demonstrate that oral immunization conferred effective protection against F4+ ETEC infection in mice and piglets lacking maternal antibodies during weaning. Sow immunization during late pregnancy generated significantly elevated antibodies in colostrum, which protected piglets against F4+ ETEC infection during lactation. Moreover, booster immunization on piglets during lactation significantly enhanced their resistance to F4+ ETEC infection during the weaning stage. This study highlights the efficacy of an oral LAB vaccine in preventing F4+ ETEC infection in piglets by combining the sow immunization and booster immunization of piglets, providing a promising vaccination strategy for future prevention and control of ETEC-induced diarrhea in piglets.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المصدر: Frontiers in Microbiology, Vol 14 (2023)

    الوصف: Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) infections poses a significant challenge in global pig farming. To address this issue, the study was conducted to identify and characterize 19 ETEC isolates from fecal samples of diarrheic pigs sourced from large-scale farms in Sichuan Province, China. Whole-genome sequencing and bioinformatic analysis were utilized for identification and characterization. The isolates exhibited substantial resistance to cefotaxime, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, ampicillin, tetracycline, florfenicol, and sulfadiazine, but were highly susceptible to amikacin, imipenem, and cefoxitin. Genetic diversity among the isolates was observed, with serotypes O22:H10, O163orOX21:H4, and O105:H8 being dominant. Further analysis revealed 53 resistance genes and 13 categories of 195 virulence factors. Of concern was the presence of tet(X4) in some isolates, indicating potential public health risks. The ETEC isolates demonstrated the ability to produce either heat-stable enterotoxin (ST) alone or both heat-labile enterotoxin (LT) and ST simultaneously, involving various virulence genes. Notably, STa were linked to human disease. Additionally, the presence of 4 hybrid ETEC/STEC isolates harboring Shiga-like toxin-related virulence factors, namely stx2a, stx2b, and stx2e-ONT-2771, was identified. IncF plasmids carrying multiple antimicrobial resistance genes were prevalent, and a hybrid ETEC/STEC plasmid was detected, highlighting the role of plasmids in hybrid pathotype emergence. These findings emphasized the multidrug resistance and pathogenicity of porcine-origin ETEC strains and the potential risk of epidemics through horizontal transmission of drug resistance, which is crucial for effective control strategies and interventions to mitigate the impact on animal and human health.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: BMC Veterinary Research, Vol 18, Iss 1, Pp 1-6 (2022)

    الوصف: Abstract Host genotype is important for enterotoxigenic E. coli (ETEC) susceptibility. We conducted two trials to evaluate the effect of CHCF1 genotype on incidence of ETEC diarrhea. In trial 1 (n = 15 pigs), pigs were inoculated with 108 CFU or 1010 CFU doses of an ETEC F4ac strain. In trial 2 (n = 33 pigs), pigs were inoculated with ETEC F4ab or F4ac. Across trials, all inoculated pigs that developed ETEC diarrhea were CHCF1 heterozygous susceptible (6/6). No inoculated CHCF1 homozygous resistant pigs developed ETEC diarrhea (0/26). Susceptibility towards ETEC F4ac/ab infection might correspond with CHCF1 genotype.

    وصف الملف: electronic resource