دورية أكاديمية

Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus.

التفاصيل البيبلوغرافية
العنوان: Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus.
المؤلفون: Currá, Anabella, Cacciabue, Marco, José Gravisaco, María, Asurmendi, Sebastián, Taboga, Oscar, Gismondi, María I.
المصدر: PeerJ; Jun2021, p1-18, 18p
مصطلحات موضوعية: FOOT & mouth disease, RNA replicase, VIRUS diseases, NON-coding RNA, MICRORNA, RNA polymerases
مستخلص: RNA interference (RNAi) is a well-conserved mechanism in eukaryotic cells that directs post-transcriptional gene silencing through small RNA molecules. RNAi has been proposed as an alternative approach for rapid and specific control of viruses including foot-and-mouth disease virus (FMDV), the causative agent of a devastating animal disease with high economic impact. The aim of this work was to assess the antiviral activity of different small RNA shuttles targeting the FMDV RNA-dependent RNA polymerase coding sequence (3D). Three target sequences were predicted within 3D considering RNA accessibility as a major criterion. The silencing efficacy of shorthairpin RNAs (shRNAs) and artificial microRNAs (amiRNAs) targeting the selected sequences was confirmed in fluorescent reporter assays. Furthermore, BHK-21 cells transiently expressing shRNAs or amiRNAs proved 70 to >95% inhibition of FMDV growth. Interestingly, dual expression of amiRNAs did not improve FMDV silencing. Lastly, stable cell lines constitutively expressing amiRNAs were established and characterized in terms of antiviral activity against FMDV. As expected, viral replication in these cell lines was delayed. These results show that the target RNA-accessibilityguided approach for RNAi design rendered efficient amiRNAs that constrain FMDV replication. The application of amiRNAs to complement FMDV vaccination in specific epidemiological scenarios shall be explored further. [ABSTRACT FROM AUTHOR]
Copyright of PeerJ is the property of PeerJ Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:21678359
DOI:10.7717/peerj.11227